Quick Overview of the SoCs

In this review, we compare four different SoCs:

  • Intel's Xeon E3-1240 v3 3.4GHz
  • Intel's Xeon E3-1230L v3 1.8GHz
  • Intel's Xeon E3-1265L v2 2.5GHz
  • Intel's Atom C2750 2.4GHz
  • AppliedMicro's X-Gene 1 2.4GHz

We have discussed the Xeon E3-1200 v3, Atom C2000, and X-Gene in more detail in our previous article. What follows is a quick discussion of why we tested these specific SKUs.

The Intel Xeon E3-1240 v3 is a speedy (3.4GHz, eight threads) Xeon E3 that is still affordable and has a decent TDP (69W). If you want a 6% higher clock (3.6GHz), Intel charges you 2.3X more. The Xeon E3-1240 v3 has an excellent performance per dollar ratio.

The Xeon E3-1230L v3 paper specs are incredible: eight cores that can boost to up to 2.8GHz (with a base clock of 1.8GHz) and a very low TDP of 25W. To see how much progress Intel has made, we compare it with the 45W Intel E3-1265L v2 at 2.5GHz based on the Ivy Bridge core. Will the Haswell core be enough to overcome the 700MHz (1.8 vs 2.5GHz) lower clock speed, which is necessary to make the chip work with a very low 25W TDP? How does this very low power Xeon with the brawny core compare to the Atom C2750?

The Atom C2750 is Intel's fastest Atom-based Xeon. We are very curious to see if there are applications where the eight lean cores can outperform the four wide cores of the Xeon E3.

And last but not least, the X-Gene 2.4GHz, the first server SoC incarnation of the ARMv8-A or AArch64 instruction set. The X-Gene has twice as many memory channels and can support twice as many DIMM slots as its Intel competitors. The cache architecture is a mix of the Atom C2000 and Xeon E3. Just like the Atom, two cores share a smaller L2 cache (256KB vs 1MB). And like the Xeon E3 (and unlike the Atom C2000), the X-Gene also has access to and 8MB L3 cache. Less positive is the antiquated 40nm production process and the fact that power management is much less sophisticated than Intel's solutions. The result is a relatively high 40W TDP.

While not every application was available on the X-Gene, we gathered enough datapoints to do a meaningful comparison. Where will the first productized ARMv8 chip land? Will it be an Atom C2000 or Xeon E3 killer, or neither? What kind of applications run well, and what kind of applications are still running much faster on a x86 chip?

We've added a few CPUs/SoCs to further improve the comparison. We've thrown in the Atom N2800 to mimic one of the worst Intel server CPUs ever (well, maybe "Paxville MP" was worse), the Atom S1260. The Xeon X5470 ("Harpertown", Penryn architecture) is also featured just to satisfy our curiosity and show how much performance has evolved. To understand the performance of the different SoCs, we should also take into account that the Intel chips almost always run at a higher clock speed than the advertised clock speed, thanks to Turbo Boost.

Overview of Clock Speeds
SoC Max. Turbo Boost Turbo Boost
with Two Cores
Turbo Boost
with All Cores
TDP
Xeon E3-1240v3 3.4 3800 3600 3600 80W
Xeon E3-1230Lv3 1.8 2800 2300 2300 25W
Xeon E3-1220v2 3.1 3500 3500 3300 69W
Xeon E3-1265Lv2 2.5 3500 3400 3100 45W
Atom C2750 2.4 2600 2600 2400 20W
X-Gene 1 2.4 N/A N/A 2400 40W

The 1.8GHz clock of the 25W TDP Xeon E3-1230L v3 may seem pretty low, but in reality the chip clocks at 2.3GHz and more. Single-threaded performance is even better with a top speed of 2.8GHz. The same is true for the Xeon E3-1265L v2, which has an even greater delta between the advertised clock speed (2.5GHz) and the actual clock speed (3.1 – 3.4GHz) when we run our benchmarks.

Low-End Server Building Blocks Benchmark Configuration
Comments Locked

47 Comments

View All Comments

  • IBleedOrange - Monday, March 9, 2015 - link

    EETimes is wrong.
    Google "Intel Denverton"
  • beginner99 - Monday, March 9, 2015 - link

    Maybe it would be good to mention the X-Gene is made on a 40nm process at the start of the article. I read the article and think for myself that the X-Gene is crap and in the end you get the explanation. It's on 40 nm vs Atoms on Intel 22 nm. It's a huge difference and currently the article is a bit misleading eg. shining a bad light on X-Gene and ARM. (And I say this even though I always was a proponent of Intel Big cores in almost all server applications).
  • Stephen Barrett - Monday, March 9, 2015 - link

    If APM had a newer part to test then we would have tested it. XG2 is simply not out yet. So the fact that APM has their flagship SoC on an older process is not misleading... Its the facts. The currently available Intel parts have a process advantage.
  • warreo - Monday, March 9, 2015 - link

    Mentioning it at the start would be good from a technical disclosure standpoint, but I'm not sure for the purposes of this article it truly matters. The article is comparing what is currently available now from APM and Intel. Reality is Intel will likely have a significant process advantage for the foreseeable future, and if you wanted to see a like for like comparison on a process basis, then you'll probably need to wait 2-3 years for X-Gene to get on 22nm, meanwhile Intel will have moved on to 10nm.
  • CajunArson - Monday, March 9, 2015 - link

    The 40nm process is only really relevant when it comes to the power-consumption comparisons.
    A 28nm.. or 20nm or 16nm... part with the same cores at the same clockspeeds will register the exact same level of performance. The only difference will be that the smaller lithographic processes should provide that level of performance in a smaller power envelope.
  • JohanAnandtech - Monday, March 9, 2015 - link

    well, with so much time invested in an article, I always hope people will read the pages between page 1 and 18 too :-p. It is mentioned in the overview of the SoCs on page 5 and quite a few times at other pages too.
  • colinstu - Monday, March 9, 2015 - link

    what server is on the bottom of the first page?
  • JohanAnandtech - Monday, March 9, 2015 - link

    A very old MSI server :-). Just to show people what webfarms used before the micro server era.
  • Samus - Monday, March 9, 2015 - link

    I use the Xeon E3-1230v3 in desktop applications all the time. It's basically an i7 for the price of an i5.

    And a lot of IT dept dump them on eBay cheap when they upgrade their servers. They can be had well under $200 lightly used. The 80w TDP could theoretically have some drawbacks for boost time, but the real-world performance according to passmark elongated tests doesn't seem to show any difference between it's boost potential and that of an 88w i7-k

    Great CPU's.
  • Alone-in-the-net - Monday, March 9, 2015 - link

    In both your compilers, you need to specify the -march=native so the the compiler can optimize for the architecture you are running on, -o3 is not enough. This enables the compiler to use cpu specific commands.

Log in

Don't have an account? Sign up now