HTPC Aspects : Introduction

Home Theater PC (HTPC) enthusiasts keep close tabs on launch of discrete GPUs which don't need a PCIe power connector. Such cards make it easy to upgrade an old PC with a low-wattage PSU into a multimedia powerhouse. Over the last decade or so, GPUs have implemented HTPC functionalities in response to consumer demand as well as changing / expected market trends. In the beginning, we had hardware acceleration for decode of MPEG-2. This was followed by H.264 / VC-1 acceleration (thanks to the emergence of Blu-rays), HD audio bitstreaming and 3D video support. More recently, we had support for playback and decode of videos in 4K resolution.

4K presents tangible benefits to consumers (unlike 3D), and market adoption is rapidly growing. In many respects, this is similar to how people migrated to 720p and 1080i TV sets when vendors started promoting high definition (HD). We know that these early adopters were stuck with expensive CRT-based TVs when the LCD-based 1080p sets came to the market at very reasonable prices. While there is no 'CRT-to-LCD'-like sea-change in the horizon, the imminent launch of HDMI '2.0' (The HDMI consortium wants to do away with version numbers for reasons known only to them) with 4Kp60 capability and display sinks fully compliant with that standard needs to be kept in mind by end users.

In the near future, it is expected that most of the 4K material reaching consumers will be encoded in H.264. Consumer devices such as the GoPro cameras still record 4K in that codec only. From a HTPC GPU perspective, it is imperative that we have support for 4K H.264 decoding. In fact, most real-time encoding activities would utilize H.264, but, a good HEVC (H.265) encoder would definitely be more efficient in terms of bitrate. The problem is that it is very difficult to make a good HEVC encoder operate in real-time. Archiving content wouldn't be a problem, though. So, it can be expected that content from streaming services / local backup (where the encoding is done offline) will move to HEVC first. A future-proof HTPC GPU would be capable of HEVC decode too.

Where does the Maxwell-based 750Ti stand when the above factors are taken into account? Make no mistake, the NVIDIA GT 640 happens to be our favourite HTPC GPU when 4K-capability is considered an absolute necessity. On paper, the 750Ti appears to be a great candidate to take over the reins from the GT 640. In order to evaluate the HTPC credentials, we put the 750Ti to test against the Zotac GT 640 as well as the Sapphire Radeon HD 7750.

In our HTPC coverage, we first look at GPU support for network streaming services, followed by hardware decoder performance for local file playback. This section also covers madVR. In the third section, we take a look some of the miscellaneous HTPC aspects such as refresh rate accuracy and hardware encoder performance.

The HTPC credentials of the cards were evaluated using the following testbed configuration:

NVIDIA GT 750Ti HTPC Testbed Setup
Processor / GPU Intel Core i7-3770K - 3.50 GHz (Turbo to 3.9 GHz)
NVIDIA GT 750Ti / Zotac GT 640 / Sapphire Radeon HD 7750
Motherboard Asus P8H77-M Pro uATX
OS Drive Seagate Barracuda XT 2 TB
Secondary Drive OCZ Vertex 2 60 GB SSD + Corsair P3 128 GB SSD
Memory G.SKILL ECO Series 4GB (2 x 2GB) SDRAM DDR3 1333 (PC3 10666) F3-10666CL7D-4GBECO CAS 9-9-9-24
Case Antec VERIS Fusion Remote Max
Power Supply Antec TruePower New TP-550 550W
Operating System Windows 8.1 Pro
Display / AVR
Sony KDL46EX720 + Pioneer Elite VSX-32
Acer H243H
Graphics Drivers GeForce v334.69 / Catalyst 14.1 Beta
Softwares CyberLink PowerDVD 13
MPC-HC 1.7.3
madVR 0.87.4

All the three cards were evaluated using the same hardware and software configuration. The Sapphire Radeon HD 7750 has an advantage in the power consumption department thanks to its passive cooling system. Other than that, we are doing apples-to-apples comparison when talking about power consumption numbers for various activities in the next few sections.

Meet The Reference GTX 750 Ti & Zotac GTX 750 Series HTPC Aspects : Network Streaming Performance
Comments Locked

177 Comments

View All Comments

  • Harag - Thursday, March 6, 2014 - link

    Not true at all. The release of the Titan showed they could unlock FP64 performance on a specific architecture. The Titan Black also has amazing FP64 performance. You may also want to look into their Quadro line.
  • kwrzesien - Tuesday, February 18, 2014 - link

    Cards are available on Newegg! Check out this EVGA Superclocked (1268MHz) with a dual-fan ACX cooler and 6-pin PCIe power connector: http://www.newegg.com/Product/Product.aspx?Item=N8...
  • Frenetic Pony - Tuesday, February 18, 2014 - link

    Maxwell is designed for mobile gaming, in which case who cares? Broadwell looks to improve performance per watt at least as much as Maxwell if Intel's initial hints of 30% power improvement for 14nm and 40% improvement for gpu power efficiency pan out. And they were already damned good.

    But Maxwell isn't designed for high end, in which case GCN 1.1 and AMD are already beating them for price for performance. Congrats Nvidia, you're second place in both categories if this card is anything to go by. I hope to hell your Titan 2 or whatever kicks more ass than this card.
  • varad - Wednesday, February 19, 2014 - link

    @FreneticPony, statements like "Maxwell is designed for mobile gaming" and "But Maxwell isn't designed for high end" tell us you know precious little. Maxwell is an architecture that will span across all of Nvidia's products [Tegra, GeForce, Quadro and Tesla].
  • Frenetic Pony - Thursday, February 20, 2014 - link

    Err... they intend to produce as such yes. But it's obvious the architecture itself is targeted squarely at mobile. Power constraints don't actually get in the way as much as other constraints do on the high end. Who really cares if it's 150+ tdp if it's gaming? You get constrained by memory latency and other things no matter how high you can clock it up.

    This appears to be Nvidia's version of Haswell, concentrated solely on improving performance per watt rather than performance at all. Which is bad timing as Intel is doing the same, but integrates it's GPUs right onto the chip, making them cheaper and smaller than any dedicated card for a laptop is going to be. Meanwhile AMD is crushing Nvidia in both compute and high end gaming performance on the desktop for performance per $.

    True, this will help mitigate electricity cost. for compute based work. But as others pointed out not by much. Meaning Nvidia stuck itself with the wrong focus at the wrong time. Maybe it will help with their Tegra SOCs, if they're lucky they'll get back into the game, as Qualcomm soundly crushed the Tegra 4 for third party ARM Socs over the last year.

    So, no, it's designed for high end. Doesn't mean they're not going to do it anyway.
  • Frenetic Pony - Thursday, February 20, 2014 - link

    I.E. it really doesn't matter how well they did at what they're doing. Because Intel has done just as well and has built in advantages for its market, what their doing doesn't help that much against AMD in the high end market, and this leaves their only chance for financial success with it being next years Tegra SOCs.
  • ninjaquick - Thursday, February 20, 2014 - link

    Plus, AMD is easily capable of taking Nvidia on at the low end with better hardware across the board, more integrated designs, etc.
  • willis936 - Thursday, February 20, 2014 - link

    Pro tip: you're always TDP limited. Increasing performance per watt IS increasing performance.
  • Harag - Thursday, March 6, 2014 - link

    Broad statements like "AMD is crushing Nvidia..." only proved @Varad correct. you know precious little.
  • HisDivineOrder - Wednesday, February 19, 2014 - link

    nVidia fits a lot more performance in a little more space at a lot less power and you think they're doing poorly? This is on the same node.

    Imagine what they'll pack into a smaller node.

    Their focus is probably the right one, given the fact they want to migrate these cores into Tegra.

Log in

Don't have an account? Sign up now