HTPC Aspects : Decoding & Rendering Benchmarks

Our decoding and rendering benchmarks consists of standardized test clips (varying codecs, resolutions and frame rates) being played back through MPC-HC v1.7.3 (which comes with LAV Filters 0.60.1.5 in-built). GPU usage is tracked through GPU-Z logs and power consumption at the wall is also reported. The former provides hints on whether frame drops could occur, while the latter is an indicator of the efficiency of the platform for the most common HTPC task - video playback. Starting with this review, we have added two new streams to our benchmark suite. The first one is a 1080p24 H.264 clip (the type of content that most HTPC users watch), while the second one is a 2160p30 (4Kp30) H.264 clip (which will give us a way to test the downscaling performance of various codec / renderer combinations).

In the course of our testing, we found that our standard 1080p60 H.264 clip played with lots of artifacts on the GT 750Ti. This happened with both MPC-HC and CyberLink PowerDVD13. Using the same drivers on the GT 640 resulted in perfect playback. [Update: NVIDIA got back to us indicating that this is a Maxwell-related driver issue. We are waiting for new drivers]

It will be interesting to determine the reason behind this issue. Not all 1080p60 clips had this problem, though. On the positive side, both the GT 750Ti and the GT 640 (as expected) were able to decode UHD / 4K streams using the GPU. The 7750 fell back to software decode (avcodec) for those streams despite the relevant setting being ticked in the LAV Video Decoder configuration.

Before proceeding to the renderer benchmark numbers, it is important to explain the GPU loading numbers in the tables below. It goes without saying that the GPU loading of NVIDIA cards must obviously not be compared directly to the AMD card. Even amongst the NVIDIA cards, the loading numbers don't signify the same thing. The GPU load numbers reported by GPU-Z don't take into consideration the core clock. Maxwell GPUs have more fine-grained clock control. For example, when playing back 4Kp30 material, the 750 Ti's core clock is around 824 MHz, but, when playing 1080p24 material, it scales down to 135 MHz. Kepler, on the other hand, seems to use 824 MHz when playing back both 4Kp30 and 1080p24 material. For 480i, it goes down to 324 MHz. In terms of GPU loading on the GTX 750 Ti, we find 4Kp30 playback reporting a load of 2.65%, while 1080p60 reports 46% under EVR. The 2% loading is under much higher core clocks compared to the clock being used for 1080p60 playback. For the GT 640, this 'disconnect' is much harder to observe, since the clocks are same for most HD material. However, in the GT 640 segment of the screenshot below, it is possible to observe a higher GPU load of 34% for 480i60 material (the third part) compared to a lower value at higher clocks for 1080p24 material.

GPU-Z 0.7.7 Sensor Readings - Fine-grained clock control in Maxwell (4Kp30 and 1080p24 playback) compared to Kepler (4Kp30, 1080p24 and 480i60 playback). Core-clock / Load numbers 'disconnect' can be observed in both cases for Maxwell, but only in the 480i60 case for Kepler.

In any case, if the GPU usage is hovering above 95%, it is likely that the playback suffered from dropped frames. In terms of apples-to-apples comparison for efficiency purposes, the power consumption at the wall reigns supreme.

Enhanced Video Renderer (EVR)

The Enhanced Video Renderer is the default renderer made available by Windows 8.1. It is a lean renderer in terms of usage of system resources since most of the aspects are offloaded to the GPU drivers directly. EVR is mostly used in conjunction with native DXVA2 decoding. The GPU is not taxed much by the EVR despite hardware decoding also taking place. In our evaluation, all video post processing steps were left for MPC-HC to decide (except for the explicit activation of inverse telecine). In all our tests, we used the native DXVA2 decoder provided by MPC-HC's internal LAV Video Decoder. Deinterlacing mode was set to aggressive in the LAV Video Decoder setting. The GT 750Ti's VPU loading barely went above 40% even when decoding 1080p60 or 4Kp30 clips.

Enhanced Video Renderer (EVR) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 44.67 57.15 W 20.92 68.74 W 14.76 68.42 W
576i50 H264 55.57 57.25 W 19.28 69.37 W 12.16 69.01 W
720p60 H264 38.91 56.75 W 36.05 61.08 W 9.90 68.16 W
1080i60 MPEG2 80.92 59.53 W 32.76 71.27 W 15.06 69.03 W
1080i60 H264 55.87 63.34 W 35.79 73.11 W 18.78 71.21 W
1080i60 VC1 79.29 60.69 W 35.07 72.63 W 18.91 70.97 W
1080p60 H264 45.53 57.67 W 39.29 61.91 W 11.87 69.02 W
1080p24 H264 15.69 55.06 W 15.61 58.26 W 4.62 67.47 W
4Kp30 H264 2.65 63.89 W 24.21 67.33 W 11.36 76.90 W

 

Enhanced Video Renderer - Custom Presenter (EVR-CP)

EVR-CP is the default renderer used by MPC-HC. It is slightly more resource intensive compared to EVR, as some explicit post processing steps are done on the GPU without going through DXVA post processing API calls provided by the driver.

Enhanced Video Renderer - Custom Presenter (EVR-CP) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 61.58 58.99 W 18.97 69.22 W 11.99 69.93 W
576i50 H264 55.45 57.93 W 17.97 68.81 W 9.93 69.85 W
720p60 H264 54.18 58.88 W 47.97 63.17 W 12.54 70.93 W
1080i60 MPEG2 17.69 68.38 W 39.84 73.85 W 22.82 72.01 W
1080i60 H264 16.92 70.14 W 42.62 74.35 W 21.97 73.43 W
1080i60 VC1 17.45 69.77 W 41.79 73.99 W 22.03 73.56 W
1080p60 H264 56.5 60.07 W 19.80 70.64 W 13.36 71.61 W
1080p24 H264 25.61 56.83 W 23.80 60.36 W 9.68 69.20 W
4Kp30 H264 5.52 67.11 W 27.51 70.76 W 26.10 84.03 W

 

Experimenting with madVR

madVR provides plenty of options to tweak. For our evaluation, we considered two main scenarios. Our first run was with the default settings ( Chroma upscaling: Bicubic with Sharpness 75, Image upscaling: Lanczos 3-tap and Image downscaling: Catmull-Rom). With these settings, both the GT 640 and 750Ti processed all our test clips without dropping frames. The HD 7750 failed with the 720p60 and 1080p60 clips.

madVR (Default Settings) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 76.02 62.27 W 28.77 73.68 W 20.91 74.76 W
576i50 H264 73.21 62.10 W 30.93 74.24 W 20.88 75.40 W
720p60 H264 19.34 69.89 W 35.18 75.42 W 25.11 78.46 W
1080i60 MPEG2 23.16 71.08 W 49.53 77.78 W 27.74 78.22 W
1080i60 H264 24.87 71.79 W 52.27 78.26 W 28.13 79.67 W
1080i60 VC1 24.47 71.06 W 51.48 77.74 W 27.88 79.18 W
1080p60 H264 20.49 70.43 W 42.30 76.45 W 29.72 79.16 W
1080p24 H264 41.70 59.20 W 43.98 63.41 W 14.03 72.08 W
4Kp30 H264 27.51 73.24 W 66.72 81.54 W 23.06 100.94 W

The second run was with our stress settings (Chroma and image upscaling : Jinc 3-tap with anti-ringing filter activated, Image downscaling : Lanczos 3-tap with anti-ringing filter activated). With these settings, the GT 750Ti was able to process all test clips without dropping frames. However, the GT 640 failed the 576i50 / 720p60 / 1080i60 / 4Kp30 clips. The HD 7750 failed the 720p60, 1080p60 and 4Kp30 clips.

madVR (Stress Settings) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 50.53 76.35 W 90.48 88.77 W 70.38 89.99 W
576i50 H264 55.08 76.92 W 95.09 92.75 W 80.21 91.65 W
720p60 H264 63.65 84.37 W 96.82 93.72 W 92.64 95.85 W
1080i60 MPEG2 51.29 76.43 W 95.93 89.86 W 63.32 88.58 W
1080i60 H264 52.65 77.06 W 94.9 90.63 W 64.26 89.64 W
1080i60 VC1 51.71 77.33 W 96.86 90.31 W 64.28 89.09 W
1080p60 H264 54.43 77.92 W 96.63 91.71 W 73.20 92.09 W
1080p24 H264 76.58 62.23 W 38.04 75.26 W 24.82 77.68 W
4Kp30 H264 77.52 99.33 W 99 101.13 W 95.71 117.07 W

As entry level HTPC GPUs become more and more powerful, madVR keeps pushing the bar higher too. Recently, NNEDI3 was added as an upscaling algorithm option. In our experiments with a 1080p display output, NNEDI3 and Jinc 3-tap (for chroma and luma upscaling) work for 1080p24 or lower resolution / frame rate clips in the 750Ti and 7750, but not in the GT 640.  With NNEDI3, the NVIDIA driver is a bit buggy, with a greenish tinge all through. Any higher resolution / frame rate immediately chokes. Jinc 3-taps works fine, though. 4K to 1080p downscaling results in greenish screens intermittently, finally ending up with a resetting Direct 3D Device failure. The downscaling path seems to be buggy, either due to driver issues or bugs in madVR v0.87.4.

HTPC Aspects : Network Streaming Performance HTPC Aspects : Miscellaneous Factors
Comments Locked

177 Comments

View All Comments

  • EdgeOfDetroit - Tuesday, February 18, 2014 - link

    The EVGAs have Displayport, but they might be the only ones. I ordered the Superclocked 750 Ti with the $5 rebate from Newegg because it had a DisplayPort and the competitors did not.
  • Death666Angel - Tuesday, February 18, 2014 - link

    "the 760 has been out for almost a year now and is an older process" -> Still the same 28nm process for the 760 and 750 alike. :)
  • MrPoletski - Tuesday, February 18, 2014 - link

    This jump in cache for 128k to 2mb... I wonder what that does for cryptocurrency mining?
  • The Von Matrices - Tuesday, February 18, 2014 - link

    Unless the integer shift operation has been improved, not much.
  • g101 - Tuesday, February 18, 2014 - link

    Nothing, nividia is fundamentally deficient with integer compute, these are architectural decisions that NVidia made in hopes of squeezing out slightly better FPS. Think: anti-gpgpu, or more of a classic asic.

    So no, this arc isn't going to change their position with regards to the actual algorithms. Perhaps there will be a moderate increase in sCrypt sha2 performance (due to the memory-hard nature of that implementation), however, nvidia's extreme (and sometimes intentional) incompetence with gpgpu leads me to believe that they still do not understand that GPGPU is the reason AMD's cards are above MSRP. It's not due to one specific hashing function, it's due to their superiority in over 11 specific functions, superior general opencl performance and comparatively greater performance for many SP compute intensive CUDA applications. For instance, cross-comparison between cuda and opencl raycasting yields some very interesting results, with the opencl/AMD solutions outperforming cuda 2:1, often with greater accuracy.

    CUDA is easy, NVidia has zero compute advantage beyond 'ease'.
  • oleguy682 - Tuesday, February 18, 2014 - link

    AMD receives nothing for their cards being sold over MSRP. Their channel partners likely have agreements in place for this generation of processors that is locked in at a specific price or price range. Perhaps if they signed new partners, or revised their processors substantially enough to warrant a new agreement, they can take advantage of the higher-than-MSRP situation, but I doubt it. And even the ASUS and Gigabytes of the world are likely unable to capitalize much on the demand. At best, they are able to sell boards to retailers as fast as they come off the line.

    Only the Neweggs are profiting handsomely off of this.
  • HighTech4US - Wednesday, February 19, 2014 - link

    Von and g101 you are both wrong as Maxwell has now greatly improved integer compute. Check out the following review page from Tom's:

    http://www.tomshardware.com/reviews/geforce-gtx-75...

    Quote: Historically, Nvidia's cards came up short against competing Radeons, which is why you see R9 290X boards selling for $700 and up. But the Maxwell architecture's improvements allow the 60 W GeForce GTX 750 Ti to outperform the 140 W GeForce GTX 660 and approach AMD's 150 W Radeon R7 265, which just launched, still isn't available yet, but is expected to sell for the same $150. On a scale of performance (in kH/s) per watt, that puts Nvidia way out ahead of AMD. Today, four GM107-based cards in a mining rig should be able to outperform a Radeon R9 290X for less money, using less power.
  • Yojimbo - Wednesday, February 19, 2014 - link

    Which is good for NVidia, maybe just lucky. Increasing gamer market share in exchange for some short-term profits is probably a good trade-off for Nvidia. If AMD can't maintain their market share, they'll have less muscle behind their Mantle initiative.
  • hpvd - Tuesday, February 18, 2014 - link

    Does this first small Maxwell brings Support for Unified Virtual Memory Management IN HARDWARE? If yes: would be really interesting to see how efficient it could work...
    details see:
    http://www.anandtech.com/show/7515/nvidia-announce...
  • willis936 - Tuesday, February 18, 2014 - link

    I would like very much to see a comparison of GM107 in SLI to other $300 graphics card options. Us 560 Ti owners are in a tough position because it's upgradin' time and there's no decent, quiet solution. SLI is still a bit of a hack and from what I can tell can be more of a compatibility headache than a performance gain. These cards may be the exception though.

Log in

Don't have an account? Sign up now