SAP S&D Benchmark

The SAP SD (Sales and Distribution, 2-Tier Internet Configuration) benchmark is an interesting benchmark as it is a real-world client-server application. It is one of those rare industry benchmarks that actually means something to the real IT professionals. Even better, the SAP ERP software is a prime example of where these Xeon E7 v2 chips will be used. We looked at SAP's benchmark database for these results.

Most of the results below all run on Windows 2008/2012 and MS SQL Server (both 64-bit). Every 2-Tier Sales & Distribution benchmark was performed with SAP's latest ERP 6 Enhancement Package 4. These results are not comparable with any benchmark performed before 2009. We analyzed the SAP Benchmark in-depth in one of our earlier articles. The profile of the benchmark has remained the same:

  • Very parallel resulting in excellent scaling
  • Low to medium IPC, mostly due to "branchy" code
  • Somewhat limited by memory bandwidth
  • Likes large caches (memory latency)
  • Very sensitive to sync ("cache coherency") latency

Let's see how the quad Xeon compares to the previous Intel generation, the cheaper dual socket systems, and the RISC competition.

SAP Sales & Distribution 2 Tier benchmark

The new Xeon E7 v2 is no less than 80% faster than its predecessor. The nearest RISC competitor (IBM Power 7 3.55) is a lot more expensive and delivers only 70% of the performance. We have little doubt that the performance/watt ratio of the Xeon E7 v2 is a lot better too.

SAP Sales & Distribution 2 Tier—8+ Socket systems

Intel delivers a serious blow to the RISC competition. For about 11 months, the Oracle SPARC T5-8 delivered the highest SAPS of all octal-socket machines. This insanely expensive machine, which keeps 1024 threads in flight (but executes 256 of them) is now beaten by the Fujitsu PRIMEQUEST 2800E. The 240 thread octal Xeon E7-8890 v2 outperforms the former champion of Oracle by about 18%. The SPARC comeback is still remarkable, although we are pretty sure that the Fujitsu server will be less expensive. Even better is you do not have to pay the Oracle support costs.

Application Development: Linux Kernel Compile HPC: OpenFoam
Comments Locked

125 Comments

View All Comments

  • Kevin G - Saturday, February 22, 2014 - link

    Not 100% sure since I'm not an IEEE member to view it, but this paper maybe the source for the POWER7+ figures:
    http://ieeexplore.ieee.org/xpl/articleDetails.jsp?...
  • Phil_Oracle - Monday, February 24, 2014 - link

    TDP is great for comparing chip to chip, but what really matters is system performance/watt. And although Intel's latest Xeon E7 v2 may have better TDP specs than either Power7+ or SPARC T5, when you look at the total system performance/watt, SPARC T5 actually leads today due to its higher throughput, core count, 4 x more threads, built-in encryption engines and higher optimization with the Oracle SW stack.
  • Flunk - Friday, February 21, 2014 - link

    8 core consumer chips now please. If you have to take the GPU off go for it.
  • DanNeely - Friday, February 21, 2014 - link

    Assuming you mean 8 identical cores, until mainstream consumer apps appear that can use more CPU resources than the 4HT cores in Intel's high end consumer chips but which can't benefit from GPU acceleration become common it's not going to happen.

    I suppose Intel could do a big.little type implementation with either core and atom or atom and the super low power 486ish architecture they announced a few months ago in the future. But in addition to thinking it was worthwhile for the power savings, they'd also need to license/work around arm's patents. I suppose a mobile version might happen someday; but don't really see a plausible benefit for laptop/desktop systems that don't need continuous connected standby like phones do.
  • Kevin G - Friday, February 21, 2014 - link

    Intel hasn't announced any distinct plans to go this route, they're at least exploring the idea at some level. The SkyLake and Knights Landing are to support the same ISA extensions and in principle a program could migrate between the two types of cores.
  • StevoLincolnite - Saturday, February 22, 2014 - link

    Er. You don't need apps to use more than 4 threads to make use of an 8 core processor.
    Whatever happened to running several demanding applications at once? Surely I am not the only one who does this...
    My Sandy-Bridge-E processor being a few years old is starting to show it's age in such instances, I would cry tears of blood for an 8-Core Haswell based processor to replace my current 6-core chip.
  • psyq321 - Monday, March 10, 2014 - link

    Well, you can buy bigger Ivy Bridge EP Xeon CPU and fit it in your LGA2011 system.

    This way you can go up to 12 cores and not have to wait for 8-core Haswell E.
  • SirKnobsworth - Friday, February 21, 2014 - link

    8 core Haswell-E chips are due out later this year. You can already buy 6 core Ivy Bridge-E chips with no integrated graphics.
  • TiGr1982 - Friday, February 21, 2014 - link

    Did you know:
    Haswell-E is supposed to be released in Q3 this year, to have up to 8 Haswell cores with HT, fit in the new revision of Socket LGA2011 (incompatible with the current desktop LGA2011), and work with DDR4 and X99 chipset. No GPU there, since it's a byproduct of server Haswell-EP.
  • Harry Lloyd - Friday, February 21, 2014 - link

    That will not help much, unless they release a 6-core chip for around 300 $, replacing the lowest LGA2011 4-core chips. It is about time.

Log in

Don't have an account? Sign up now