Processor Graphics: Compute and Synthetics

Our GPU Compute tests are designed to stress the integrated graphics of the system using old and new GPU tools. This is where the benefits of Kaveri should come in – if a benchmark is programmed to take advantage of the GCN architecture then the relevant speed up should be observed. In none of the GCN benefits have any use then we are relying on pure grunt to get the top scores.

3DMark Vantage Pixel Fill

3DMark Vantage Texel Fill

Tessmark, Image Set 4, 64x

LuxMark 2.0

3DMark: Ice Storm

3DMark: Ice Storm Extreme

3DMark: Ice Storm Unlimited

3DMark: Cloud Gate

3DMark: Fire Strike

3DMark: Fire Strike Extreme

3DMark11 - Performance

3DMark06

CompuBench CL Fluid GPU + Computer Vision GPU

CompuBench CL is an OpenCL compute benchmark designed to test some common in-use algorithms. Due to the way it is designed, any OpenCL compatible device can run the benchmarks, and as such we have run both the Fluid Dynamics and Computer Vision portions on the CPU and integrated graphics on each processor we have tested. Here are the GPU results.

CLBenchmark

GCN really wins out here, showcasing how important OpenCL compliance can be to extract potential compute.

Processor Graphics: Sleeping Dogs, Company of Heroes 2 Drawing Performance Conclusions
Comments Locked

380 Comments

View All Comments

  • boozed - Tuesday, January 14, 2014 - link

    You must be a hoot at parties.
  • boozed - Wednesday, January 15, 2014 - link

    And I hit reply on the wrong bloody comment. My apologies...
  • monsieurrigsby - Wednesday, January 29, 2014 - link

    I'm a bit slow to the party, but talk of discrete GPUs leads me to the main question I still have that I don't see explained (possibly because the authors assume deeper understanding of CPU/GPU programming), and haven't seen discussed elsewhere. (I've not looked *that* hard...)

    If you have a Kaveri APU and a mid/high-end discrete GPU that won't work with Dual Graphics (if it arrives), what processing can and can't use the on-APU GPU? If we're talking games (the main scenario), what can developers offload onto the onboard GPU and what can't they? What depends on the nature of the discrete card (e.g., are modern AMD ones 'HSA enabled' in some way?)? If you *do* have a Dual Graphics capable discrete GPU, does this still limit what you can *explicitly* farm off to the onboard GPU?

    My layman's guess is that GPU compute stuff can still be done but, without dual graphics, stuff to do with actual frame rendering can't. (I don't know enough about GPU programming to know how well-defined that latter bit is...)

    It's just that that seems the obvious question for the gaming consumer: if I have a discrete card, in what contexts is the on-APU GPU 'wasted' and when could it be used (and how much depends on what the discrete card is)? And I guess the related point is how much effort is the latter, and so how likely are we to see elements of it?

    Am I missing something that's clear?
  • monsieurrigsby - Wednesday, January 29, 2014 - link

    Plus detail on Mantle seems to suggest that this might provide more control in this area? But are there certain types of things which would be *dependent* on Mantle?
    http://hothardware.com/News/How-AMDs-Mantle-Will-R...
  • nissangtr786 - Tuesday, January 14, 2014 - link

    I told amd fanboys the fpu on intel and the raw mflops mips ofintel cpu destroy current a10 apus, its no real suprise all those improvement show very little in benchmarks with kaveri steamroller cores. amd fanboys said it will reach i5 2500k performance, I said i3 4130 but overall i3 4130 will be faster in raw performance and I am right. I personally have an i5 4430 and it looks like i5's still destroy these a10 apu in raw performance.

    http://browser.primatelabs.com/geekbench3/326781
    browser.primatelabs.com/geekbench3/321256
    a10-7850k Sharpen Filter Multi-core 5846 4.33 Gflops
    browser.primatelabs.com/geekbench3/321256
    i5 4430 Sharpen Filter Multi-core 11421 8.46 Gflops
  • gngl - Tuesday, January 14, 2014 - link

    "I personally have an i5 4430 and it looks like i5's still destroy these a10 apu in raw performance."

    You seem to have a very peculiar notion of what "raw performance" means, if you're measuring it in terms of what one specific benchmark does with one specific part of the chip. There's nothing raw about a particular piece of code executing a specific real-world benchmark using a particular sequence of instructions.
  • chrnochime - Tuesday, January 14, 2014 - link

    Who cares what CPU you have anyway. If you want to show off, tell us you have at least a 4670k and not a 4430. LOL
  • keveazy - Tuesday, January 14, 2014 - link

    It's relevant that he used the i5 4430 in his comment. Compare the price range and you'll see. These AMD apu's are useless unless your just looking to build a PC that's not meant to handle heavily threaded tasks.
  • tcube - Thursday, January 16, 2014 - link

    Ok... heavily threaded tasks ok... examples! Give me one example of one software 90% of pc users use 90% of the time that this apu can't handle... then and ONLY then is the cpu relevant! Other then that it's just bragging rights and microseconds nobody cares about on a PC!

    Instead we do care to have a chip that plays anything from hd video to AAA 3d games and also is fast enough for anything else and don't need a gpu for extra cost, power usage heat and noise! And that ain't any intel that fits on a budget!
  • keveazy - Saturday, January 18, 2014 - link

    I'll give you 1 example. Battlefield 4.

Log in

Don't have an account? Sign up now