One of the touted benefits of Haswell is the compute capability afforded by the IGP.  For anyone using DirectCompute or C++ AMP, the compute units of the HD 4600 can be exploited as easily as any discrete GPU, although efficiency might come into question.  Shown in some of the benchmarks below, it is faster for some of our computational software to run on the IGP than the CPU (particularly the highly multithreaded scenarios). 

Grid Solvers - Explicit Finite Difference on IGP

As before, we test both 2D and 3D explicit finite difference simulations with 2n nodes in each dimension, using OpenMP as the threading operator in single precision.  The grid is isotropic and the boundary conditions are sinks.  We iterate through a series of grid sizes, and results are shown in terms of ‘million nodes per second’ where the peak value is given in the results – higher is better.

Two Dimensional:

The results on the IGP are 50% higher than those on the CPU, and it would seem that memory can make a difference as well.  As long as 1333 MHz is not chosen, there is at least a 2% gain to be had.  Otherwise, the next jump up is at 2666 MHz for another 2%, which might not be cost effective.

Three Dimensional:

The 3D results seem to be a little haphazard, with 1333 C7 and 2400 C9 both performing well.  1600 C11 definitely is out of the running, although anything 2400 MHz or above affords almost a 10%+ benefit.

N-Body Simulation on IGP

As with the CPU compute, we run a simulation of 10240 particles of equal mass - the output for this code is in terms of GFLOPs, and the result recorded was the peak GFLOPs value.

In terms of a workload that calculates FLOPs, the operational workload does not seem to be affected by memory.

3D Particle Movement on IGP

Similar to our CPU Compute algorithm, we calculate the random motion in 3D of free particles involving random number generation and trigonometric functions.  For this application we take the fastest true-3D motion algorithm and test a variety of particle densities to find the peak movement speed.  Results are given in ‘million particle movements calculated per second’, and a higher number is better.

Despite this result being over 35x the equivalent calculation on a fully multithreaded 4770K CPU (200 vs. 7000), again there seems little difference between memory speeds.  3000 C12 gets a small peak over the rest, similar to the n-Body test.

Matrix Multiplication on IGP

Matrix Multiplication occurs in a number of mathematical models, and is typically designed to avoid memory accesses where possible and optimize for a number of reads and writes depending on the registers available to each thread or batch of dispatched threads.  He we have a crude MatMul implementation, and iterate through a variety of matrix sizes to find the peak speed.  Results are given in terms of ‘million nodes per second’ and a higher number is better.

Matrix Multiplication on this scale seems to vary little between memory settings, although a shift towards the lower CL timings gives a marginally (though statistically minor) better result.

3D Particle Movement on IGP

Similar to our 3DPM Multithreaded test, except we run the fastest of our six movement algorithms with several million threads, each moving a particle in a random direction for a fixed number of steps.  Final results are given in million movements per second, and a higher number is better.

While there is a slight dip using 1333 C9, in general almost all of our memory timing settings perform roughly the same.  The peak shown using our memory kit at its XMP rated timings are presumably more due to the adjustments in BCLK which need to be made in order to hit this memory frequency.

Memory Scaling on Haswell: CPU Compute Memory Scaling on Haswell: IGP Gaming
Comments Locked

89 Comments

View All Comments

  • Rainman11 - Tuesday, October 1, 2013 - link

    The gaming segment was utterly pointless. Show the difference using a resolution of at least 1080p or don't even bother including it.
  • Anonymuze - Tuesday, October 1, 2013 - link

    I'm really curious to see a similar test on HD5000 or (28W) HD5100 - they don't have the benefit of EDRAM like the HD5200 and should be much closer to being memory bandwidth limited than HD4600.
  • Anonymuze - Tuesday, October 1, 2013 - link

    ..."should be much closer to being memory bandwidth limited"
    I meant to say "should be much closer to memory bandwidth limits" or "should be much more memory bandwidth limited" - pick one :P
  • Kathrine647 - Wednesday, October 2, 2013 - link

    like Gregory said I am alarmed that a stay at home mom able to earn $5886 in 1 month on the internet. visit their website............B u z z 5 5 . com open the link without spaces
  • Hrel - Thursday, October 3, 2013 - link

    This is a lot of pages on content that all just tells you to buy 1866-CL9. Good to know.
  • SetiroN - Friday, October 4, 2013 - link

    Ian, you REALLY should include code compilation benchmarks.
    80% of the people I know who actually need a powerful CPU/RAM/SSD combination use it to build software.
    You took the time to test IGP performance (who the spends money on RAM to play on an HD4000?) when you could have provided much more useful data. :)
  • dreamer77dd - Saturday, October 5, 2013 - link

    AMD might like higher speed RAM then Intel. That could be interesting article also.
  • Laststop311 - Sunday, October 6, 2013 - link

    This article just confirmed my suspicions, that this more expensive faster ram basically has no effect on your system. Basically anything 1866+ is going to be relatively the same performance. I use 2133mhz CAS 8 ram in my system and am totally happy and only paid 105 for 4x4GB kit.
  • SmokingCrop - Sunday, October 27, 2013 - link

    What a useless test.. Now we don't even know if resolution matters..
    No one is going to be doing crossfire so (s)he can play on 1 monitor with 1360x768 pixels..
  • qiplayer - Saturday, November 2, 2013 - link

    I don't understand testing a 3000mhz kit and to evaluate gaming performance use that resolution (extremely low) and even not one gpu.
    I would suggest to once test the difference with this very interesting test on a triple hd resolution with 2 or 3 gpu. Or even better, as we talk about memory for the enthusiasts, cpu should be overclocked, gpu should be at least 2 and overclocked.
    Te title cud be: Aiming at 120hz on 5800x1080, how much to spend on the ram?
    Maybe it comes out that 150$ more on memory are enough for 5% higher fps, that are not nothing when spending already some $$$$ on gpu to get the best, another $$$ on cpu and $$$$to put all on water.

Log in

Don't have an account? Sign up now