The Launch Lineup: Quad Cores For All

As was the case with the launch of Ivy Bridge last year, Intel is initially launching with their high-end quad core parts, and as the year passes on will progressively rollout dual cores, low voltage parts, and other lower-end parts. That means the bigger notebooks and naturally the performance desktops will arrive first, followed by the ultraportables, Ultrabooks and more affordable desktops. One change however is that Intel will be launching their first BGA (non-socketed) Haswell part right away, the Iris Pro equipped i7-4770R.

Intel 4th Gen Core i7 Desktop Processors
Model Core i7-4770K Core i7-4770 Core i7-4770S Core i7-4770T Core i7-4770R Core i7-4765T
Cores/Threads 4/8 4/8 4/8 4/8 4/8 4/8
CPU Base Freq 3.5 3.4 3.1 2.5 3.2 2.0
Max Turbo 3.9 (Unlocked) 3.9 3.9 3.7 3.9 3.0
Test TDP 84W 84W 65W 45W 65W 35W
HD Graphics 4600 4600 4600 4600 Iris Pro 5200 4600
GPU Max Clock 1250 1200 1200 1200 1300 1200
L3 Cache 8MB 8MB 8MB 8MB 6MB 8MB
DDR3 Support 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600
vPro/TXT/VT-d/SIPP No Yes Yes Yes No Yes
Package LGA-1150 LGA-1150 LGA-1150 LGA-1150 BGA LGA-1150
Price $339 $303 $303 $303 OEM $303

Starting at the top of the product and performance stack, we have the desktop Core i7 parts. All of these CPUs feature Hyper-Threading Technology, so they’re the same quad-core with four virtual cores that we’ve seen since Bloomfield hit the scene. The fastest chip for most purposes remains the K-series 4770K, with its unlocked multiplier and slightly higher base clock speed. Base core clocks as well as maximum Turbo Boost clocks are basically dictated by the TDP, with the 4770S being less likely to maintain maximum turbo most likely, and the 4770T and 4765T giving up quite a bit more in clock speed in order to hit substantially lower power targets.

It’s worth pointing out that the highest “Test TDP” values are up slightly relative to the last generation Ivy Bridge equivalents—84W instead of 77W. Mobile TDPs are a different matter, and as we’ll discuss elsewhere they’re all 2W higher, but that is further offset by the improved idle power consumption Haswell brings.

Nearly all of these are GT2 graphics configurations (20 EUs), so they should be slightly faster than the last generation HD 4000 in graphics workloads. The one exception is the i7-4770R, which is also the only chip that comes in a BGA package. The reasoning here is simple if perhaps flawed: if you want the fastest iGPU configuration (GT3e with 40 EUs and embedded DRAM), you’re probably not going to have a discrete GPU and will most likely be purchasing an OEM desktop. Interestingly, the 4770R also drops the L3 cache down to 6MB, and it’s not clear whether this is due to it having no real benefit (i.e. the eDRAM functions as an even larger L4 cache), or if it’s to reduce power use slightly, or Intel may have a separate die for this particular configuration. Then again, maybe Intel is just busily creating a bit of extra market segmentation.

Not included in the above table are all the common features to the entire Core i7 line: AVX2 instructions, Quick Sync, AES-NI, PCIe 3.0, and Intel Virtualization Technology. As we’ve seen in the past, the K-series parts (and now the R-series as well) omit support for vPro, TXT, VT-d, and SIPP from the list. The 4770K is an enthusiast part with overclocking support, so that makes some sense, but the 4770R doesn’t really have the same qualification. Presumably it’s intended for the consumer market, as businesses are less likely to need the Iris Pro graphics.

Intel 4th Gen Core i5 Desktop Processors
Model Core i5-4670K Core i5-4670 Core i5-4670S Core i5-4670T Core i5-4570 Core i5-4570S
Cores/Threads 4/4 4/4 4/4 4/4 4/4 4/4
CPU Base Freq 3.4 3.4 3.1 2.3 3.2 2.9
Max Turbo 3.8 (Unlocked) 3.8 3.8 3.3 3.6 3.6
Test TDP 84W 84W 65W 45W 84W 65W
HD Graphics 4600 4600 4600 4600 4600 4600
GPU Max Clock 1200 1200 1200 1200 1150 1150
L3 Cache 6MB 6MB 6MB 6MB 6MB 6MB
DDR3 Support 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600
vPro/TXT/VT-d/SIPP No Yes Yes Yes Yes Yes
Package LGA-1150 LGA-1150 LGA-1150 LGA-1150 LGA-1150 LGA-1150
Price $242 $213 $213 $213 $192 $192

The Core i5 lineup basically rehashes the above story, only now without Hyper-Threading. For many users, Core i5 is the sweet spot of price and performance, delivering nearly all the performance of the i7 models at 2/3 the price. There aren’t any Iris or Iris Pro Core i5 desktop parts, at least not yet, and all of the above CPUs are using the GT2 graphics configuration. As above, the K-series part also lacks vPro/TXT/VT-d support but comes with an unlocked multiplier.

Obviously we’re still missing all of the Core i3 parts, which are likely to be dual-core once more, along with some dual-core i5 parts as well. These are probably going to come in another quarter, or at least a month or two out, as there’s no real need for Intel to launch their lower cost parts right now. Similarly, we don’t have any Celeron or Pentium Haswell derivatives launching yet, and judging by the Ivy Bridge rollout I suspect it may be a couple quarters before Intel pushes out ultra-budget Haswell chips. For now, the Ivy Bridge Celeron/Pentium parts are likely as low as Intel wants to go down the food chain for their “big core” architectures.

For those interested in the mobile side of things, we’ve broken out those parts into a separate Pipeline article.

Memory, Platform & Overclocking Die Size and Transistor Count
Comments Locked

210 Comments

View All Comments

  • CajunArson - Saturday, June 1, 2013 - link

    Great review, but I have a question about this rather cryptic comment for bclk overclocking:

    "All CPUs are frequency locked, however K-series parts ship fully unlocked. A new addition is the ability to adjust BCLK to one of three pre-defined straps (100/125/167MHz). The BCLK adjustment gives you a little more flexibility when overclocking, but you still need a K-SKU to take advantage of the options."

    Does that mean you cannot do bclk overclocking on the non-K series parts? For example, are you saying that a 4770 (non-K) part cannot be used with a bclk overclock? Or are you just saying that the K-series parts give you all the options including unlocked multipliers? Can you clarify this?
  • Rajinder Gill - Saturday, June 1, 2013 - link

    All you can do on the non K parts is 100 bclk +- 5%.
  • smilingcrow - Saturday, June 1, 2013 - link

    It doesn't seem cryptic to me!
  • kasakka - Saturday, June 1, 2013 - link

    Too bad there are no temperature comparisons. Would be interesting to see if Intel has improved the TIM under the heatspreader.

    That said, now I'm glad I didn't wait for Haswell as it doesn't seem to have much to give over Ivy unless you use the intergrated GPU.
  • A5 - Saturday, June 1, 2013 - link

    Other reviews have it as notably hotter under load, fwiw. Probably due to the voltage regulators.
  • HisDivineOrder - Saturday, June 1, 2013 - link

    Now that AMD has mostly fallen back to the mid-range and low-end, this is a similar situation to where the new Geforces landed.

    You get a bit more performance for about the same money. For the GPU side, the benefit was mostly in superior cooling solutions all (supposedly) having to be equivalent to the excellent Titan Blower. For the CPU side, the benefit is that we have lower idles. These chips stay in idle a lot, so it's a gain, but this isn't a chip that's going to light the hobbyist world on fire.

    Just like with the GF770, you get more performance and a few fringe benefits (that should have been there all along, ie., 6 SATA3 connections) for the same as you would have paid for the equivalent part last week.

    I don't see much here to make me want to upgrade from my IVB 3750k, though. I'm leaning toward picking up a used GF670 and SLI'ing now, given all the givens.

    The truly disappointing part of all this is if this is truly the last new desktop release for two years. Imagine me going 3+ years before I even FEEL an itch to upgrade my processor. I sincerely pray that AMD gets its act together and puts some competitive pressure on Intel at the mid-high end (ie., 2500k, 3570k) with a truly great CPU. I live in hope that the 8350 successor (based on Steamroller?) will be that part, but AMD needs to update their chipsets big time.

    Until then, I think all we can expect from Intel and nVidia is more of the same, which is the worst part of both the 700 series and Haswell. Neither felt compelled to do more than offer minor improvements in performance because neither is feeling any competitive pressure of any kind.

    That's why Intel IS pushing the power argument and fighting that fight hard. Because ARM *is* applying competitive pressure.
  • Hector2 - Saturday, June 1, 2013 - link

    Even without competition, Intel is still by economics to keep pushing transistor sizes and die sizes smaller and smaller --- it still lowers their costs and they make more money. This also means they keep getting faster and require less and less power. What competition does, besides lower prices, is drive architectural changes that add more die size (like an integrated GPU and FIVR)
  • JDG1980 - Saturday, June 1, 2013 - link

    Keep in mind that an increasing percentage of desktop/laptop PCs are now in the business world (since light-use consumers have often moved towards tablets and smartphones). If you're doing office work, then lower power use on idle/light load is a big deal. Office PCs almost never run balls-to-the-wall. In fact, usually the only time the CPU even comes close to being completely pegged is when the mandatory virus scan runs (and even then, it's often HDD-bound).
  • leliel - Saturday, June 1, 2013 - link

    I'm still on a Lynnfield 750 (as are a few other commenters, I note) and this system is now 3.5 years old without me having had the itch to upgrade or even overclock the CPU. I have been eyeing Haswell because I know I will be making a fresh build at the end of the year, but that's due to circumstance and not need. 30% clock increase in four years is nothing like the old days... but frankly it's nice to be able to keep up in everything just by swapping out video cards.
  • Klimax - Sunday, June 2, 2013 - link

    I doubt we will see large increases in future. We need new algorithms. (Current ones are the limit) Why? Because major performance increases would require significant increase in complexity and GPU showed what that causes.
    And AMD won't and cannot change it.

Log in

Don't have an account? Sign up now