The Final Word On Overclocking

Before we jump into our performance breakdown, I wanted to take a few minutes to write a bit of a feature follow-up to our overclocking coverage from Tuesday. Since we couldn’t reveal performance numbers at the time – and quite honestly we hadn’t even finished evaluating Titan – we couldn’t give you the complete story on Titan. So some clarification is in order.

On Tuesday we discussed how Titan reintroduces overvolting for NVIDIA products, but now with additional details from NVIDIA along with our own performance data we have the complete picture, and overclockers will want to pay close attention. NVIDIA may be reintroducing overvolting, but it may not be quite what many of us were first thinking.

First and foremost, Titan still has a hard TDP limit, just like GTX 680 cards. Titan cannot and will not cross this limit, as it’s built into the firmware of the card and essentially enforced by NVIDIA through their agreements with their partners. This TDP limit is 106% of Titan’s base TDP of 250W, or 265W. No matter what you throw at Titan or how you cool it, it will not let itself pull more than 265W sustained.

Compared to the GTX 680 this is both good news and bad news. The good news is that with NVIDIA having done away with the pesky concept of target power versus TDP, the entire process is much simpler; the power target will tell you exactly what the card will pull up to on a percentage basis, with no need to know about their separate power targets or their importance. Furthermore with the ability to focus just on just TDP, NVIDIA didn’t set their power limits on Titan nearly as conservatively as they did on GTX 680.

The bad news is that while GTX 680 shipped with a max power target of 132%, Titan is again only 106%. Once you do hit that TDP limit you only have 6% (15W) more to go, and that’s it. Titan essentially has more headroom out of the box, but it will have less headroom for making adjustments. So hardcore overclockers dreaming of slamming 400W through Titan will come away disappointed, though it goes without saying that Titan’s power delivery system was never designed for that in the first place. All indications are that NVIDIA built Titan’s power delivery system for around 265W, and that’s exactly what buyers will get.

Second, let’s talk about overvolting. What we didn’t realize on Tuesday but realize now is that overvolting as implemented in Titan is not overvolting in the traditional sense, and practically speaking I doubt too many hardcore overclockers will even recognize it as overvolting. What we mean by this is that overvolting was not implemented as a direct control system as it was on past generation cards, or even the NVIDIA-nixed cards like the MSI Lightning or EVGA Classified.

Overvolting is instead a set of two additional turbo clock bins, above and beyond Titan’s default top bin. On our sample the top bin is 1.1625v, which corresponds to a 992MHz core clock. Overvolting Titan to 1.2 means unlocking two more bins: 1006MHz @ 1.175v, and 1019MHz @ 1.2v. Or put another way, overvolting on Titan involves unlocking only another 27MHz in performance.

These two bins are in the strictest sense overvolting – NVIDIA doesn’t believe voltages over 1.1625v on Titan will meet their longevity standards, so using them is still very much going to reduce the lifespan of a Titan card – but it’s probably not the kind of direct control overvolting hardcore overclockers were expecting. The end result is that with Titan there’s simply no option to slap on another 0.05v – 0.1v in order to squeak out another 100MHz or so. You can trade longevity for the potential to get another 27MHz, but that’s it.

Ultimately, this means that overvolting as implemented on Titan cannot be used to improve the clockspeeds attainable through the use of the offset clock functionality NVIDIA provides. In the case of our sample it peters out after +115MHz offset without overvolting, and it peters out after +115MHz offset with overvolting. The only difference is that we gain access to a further 27MHz when we have the thermal and power headroom available to hit the necessary bins.

GeForce GTX Titan Clockspeed Bins
Clockspeed Voltage
1019MHz 1.2v
1006MHz 1.175v
992MHz 1.1625v
979MHz 1.15v
966MHz 1.137v
953MHz 1.125v
940MHz 1.112v
927MHz 1.1v
914MHz 1.087v
901MHz 1.075v
888MHz 1.062v
875MHz 1.05v
862MHz 1.037v
849MHz 1.025v
836MHz 1.012v

Finally, as with the GTX 680 and GTX 690, NVIDIA will be keeping tight control over what Asus, EVGA, and their other partners release. Those partners will have the option to release Titan cards with factory overclocks and Titan cards with different coolers (i.e. water blocks), but they won’t be able to expose direct voltage control or ship parts with higher voltages. Nor for that matter will they be able to create Titan cards with significantly different designs (i.e. more VRM phases); every Titan card will be a variant on the reference design.

This is essentially no different than how the GTX 690 was handled, but I think it’s something that’s important to note before anyone with dreams of big overclocks throws down $999 on a Titan card. To be clear, GPU Boost 2.0 is a significant improvement in the entire power/thermal management process compared to GPU Boost 1.0, and this kind of control means that no one needs to be concerned with blowing up their video card (accidentally or otherwise), but it’s a system that comes with gains and losses. So overclockers will want to pay close attention to what they’re getting into with GPU Boost 2.0 and Titan, and what they can and cannot do with the card.

Titan's Performance Unveiled Titan’s Compute Performance (aka Ph.D Lust)
Comments Locked

337 Comments

View All Comments

  • chizow - Thursday, February 21, 2013 - link

    You must not have followed the development of GPUs, and particularly flagship GPUs very closely in the last decade or so.

    G80, the first "Compute GPGPU" as Nvidia put it, was first and foremost a graphics part and a kickass one at that. Each flagship GPU after, GT200, GT200b, GF100, GF110 have continued in this vein...driven by the desktop graphics market first, Tesla/compute market second. Hell, the Tesla business did not even exist until the GeForceTesla200. Jensen Huang, Nvidia's CEO, even got on stage likening his GPUs to superheroes with day jobs as graphics cards while transforming into supercomputers at night.

    Now Nvidia flips the script, holds back the flagship GPU from the gaming market that *MADE IT POSSIBLE* and wants to charge you $1K because it's got "SuperComputer Guts"??? That's bait and switch, stab in the back, whatever you want to call it. So yes, if you were actually in this market before, Nvidia has screwed you over to the tune of $1K for something that used to cost $500-$650 max.
  • CeriseCogburn - Saturday, February 23, 2013 - link

    You only spend at max $360 for a video card as you stated, so this doesn't affect you and you haven't been screwed.

    Grow up crybaby. A company may chagre what it desires, and since you're never buying, who cares how many times you scream they screwed everyone ?
    NO ONE CARES, not even you, since you never even pony up $500, as you yourself stated in this long, continuous crybaby whine you made here, and have been making, since the 680 was released, or rather, since Charlie fried your brain with his propaganda.

    Go get your 98 cent a gallon gasoline while you're at it , you fool.
  • chizow - Saturday, February 23, 2013 - link

    Uh no, I've spent over $1K in a single GPU purchasing transaction, have you? I didn't think so.

    I'm just unwilling to spend *$2K* for what cost $1K in the past for less than the expected increase in performance. I spent $700 this round instead of the usual $1K because that's all I was willing to pay for a mid-range ASIC in GK104 and while it was still a significant upgrade to my last set of $1K worth of graphics cards, I wasn't going to plunk down $1K for a set of mid-range GK104 GTX 680s.

    It's obvious you have never bought in this range of GPUs in the past, otherwise you wouldn't be posting such retarded replys for what is clearly usurious pricing by Nvidia.

    Now go away, idiot.
  • CeriseCogburn - Tuesday, February 26, 2013 - link

    Wrong again, as usual.
    So what it boils down to is you're a cheapskate, still disgruntled, still believe in Charlie D's lie, and are angry you won't have the current top card at a price you demand.
    I saw your whole griping list in the other thread too, but none of what you purchase or don't purchase makes a single but of difference when it comes to your insane tinfoil hat lies that you have used for your entire argument

    Once again, pretending you aren't aware of production capacity leaves you right where you brainless rant started a long time ago.

    You cover your tracks whining about ATI's initial price, which wasn't out of line either, and ignore nVidia's immediate crushing of it when the 680 came out, as you still complained about the performance increase there. You're a crybaby, that's it.

    That's what you have done now for months on end, whined and whined and whined, and got caught over and over in exaggerations and lies, demanding a perfectly increasing price perf line slanting upwards, for years on end, lying about it's past, which I caught you on in the earlier reviews.

    Well dummy, that's not how performance/price increases work in any area of computer parts, anyway.
    Glad you're just another freaking parrot, as the reviewers have trained you fools to automaton levels.
  • Pontius - Thursday, February 21, 2013 - link

    My only interest at the moment is OpenCL compute performance. Sad to see it's not working at the moment, but once they get the kinks worked out, I would really love to see some benchmarks.

    Also, as any GPGPU programmer knows, the number one bottleneck for GPU computing is randomly accessing memory. If you are working only within the on-chip local memory, then yes, you get blazingly fast speeds on a GPU. However, the second you do something as simple as a += on a global memory location, your performance grinds to a screeching halt. I would really like to see the performance of these cards on random memory heavy OpenCL benchmarks. Thanks for the review!
  • codedivine - Thursday, February 21, 2013 - link

    We may do this in the future if I get some time off from univ work. Stay tuned :)
  • Pontius - Thursday, February 21, 2013 - link

    Thanks codedevine, I'll keep an eye out.
  • Pontius - Thursday, February 21, 2013 - link

    My only interest at the moment is OpenCL compute performance. Sad to see it's not working at the moment, but once they get the kinks worked out, I would really love to see some benchmarks.

    Also, as any GPGPU programmer knows, the number one bottleneck for GPU computing is randomly accessing memory. If you are working only within the on-chip local memory, then yes, you get blazingly fast speeds on a GPU. However, the second you do something as simple as a += on a global memory location, your performance grinds to a screeching halt. I would really like to see the performance of these cards on random memory heavy OpenCL benchmarks. Thanks for the review!
  • Bat123Man - Thursday, February 21, 2013 - link

    The Titan is nothing more than a proof-of-concept; "Look what we can do! Whohoo! Souped up to the max!" Nvidia is not intending this card to be for everyone. They know it will be picked up by a few well-moneyed enthusiasts, but it is really just a science project so that when people think about "the fastest GPU on the market", they think Nvidia.

    How often do you guys buy the best of the best as soon as it is out the door anyway ? $1000, $2000, it makes no difference, most of us wouldn't buy it even at 500 bucks. This is all about bragging rights, pure and simple.
  • Oxford Guy - Thursday, February 21, 2013 - link

    Not exactly. The chip isn't fully enabled.

Log in

Don't have an account? Sign up now