As we go up the memory speeds, moving from 1333 to 1600 to 1866 means that the next stop is DDR3-2133.  DDR3-2133 will be the next checkpoint for processors to accept by default in the future, and as a result there is a price premium for all memory kits equal and above this mark.  In our case, the G.Skill F3-17000CL9Q-16GBZH comes in at $130, some $35 more than the DDR3-1866 kit.  That is quite a hefty chunk, adding 37% on the price of memory for only a 14.3% increase in absolute MHz value terms.  As we will see in the memory benchmarks later, the 2133 MHz point does offer improvements over the 1866 kit, but not by as much as 37%.

Visual Inspection

In the land of G.Skill and kit naming, RipjawsZ is the last step in the Ripjaws line before we hit Trident.  The Ripjaws naming scheme was devised in anticipation of the Sandy Bridge and Sandy Bridge-E processor lineup where the majority of processors can achieve the speeds of all of the Ripjaws kits.  The look of the RipjawsZ kits are less edge-driven than the RipjawsX, with a rounded module end, but more bulk in terms of heatsink with the top edge still being ~1cm taller than the module.  This causes issues when paired with large heatsinks, despite large heatsinks being the aim of the processors paired with this kit.

Again, the test with this module in a large heatsink environment gives us the following:

JEDEC + XMP Settings

G.Skill
Kit Speed 1333 1600 1866 2133 2400
Subtimings 9-9-9-24 2T 9-9-9-24 2T 9-10-9-28 2T 9-11-10-28 2T 10-12-12-31 2T
Price $75 $80 $95 $130 $145
XMP No Yes Yes Yes Yes
Size 4 x 4 GB 4 x 4 GB 4 x 4 GB 4 x 4 GB 4 x 4 GB

MHz 1333 1600 1867 2134 2401
Voltage 1.500 1.500 1.500 1.650 1.650
tCL 9 9 9 9 10
tRCD 9 9 10 11 12
tRP 9 9 9 10 12
tRAS 24 24 28 28 31
tRC 33 33 37 38 43
tWR 10 12 14 16 16
tRRD 4 5 5 6 7/6
tRFC 107 128 150 171 313
tWTR 5 6 8/7 9/8 10/9
tRTP 5 6 8/7 9/8 10/9
tFAW 20 24 24 25 26
tCWL - 7 7 7 7
CR - 2 2 2 2

 

F3-14900CL9Q-16GBSR: 4 x 4 GB G.Skill Sniper Kit F3-2400CL10Q-16GTX: 4 x 4 GB G.Skill TridentX Kit
Comments Locked

114 Comments

View All Comments

  • vegemeister - Friday, October 19, 2012 - link

    Most of the (still tiny) difference that appeared in the x264 benchmark was in the first pass. Two pass encodes really only make sense when you're trying to fit a single video onto a single storage device. That's an extremely uncommon use case these days, for everyone but the people mastering blu-rays.
  • jonyah - Thursday, October 18, 2012 - link

    "I remember buying my first memory kit ever. It was a 4GB kit of OCZ DDR2 for my brand new E6400 system, and at the time I paid ~$240, sometime back in 2005."

    I remember buying my first kit too. It was an upgrade from the 2MB I had to 6MB (yes MB, not GB), and that 6MB cost me $200 as well, this was back in 1995. Ten years and we had a 1000x improvement in size and who knows how much in speed.
  • rchris - Thursday, October 18, 2012 - link

    Well, dang it! All these "I remember..." comments have really made me feel old. In my case it was paying $300 for a used 1MB board for a Zenith Z100. Can't even remember the year--somewhere in the mid- to late-1980s.
  • IanCutress - Thursday, October 18, 2012 - link

    I should point out that the kit I got was my first purchased kit on its own... Many computers before then where they were built my family or came pre-built.

    On the topic of A10 comparisons, I had thought of doing some in the future if enough interest was there. As the majority of CPU sales is in Intel's favor, we went with Intel first. (Also most of the testing for this review occurred before I had an A10 sample at hand.)

    Ian
  • Termie - Thursday, October 18, 2012 - link

    Great article, Ian. Thanks for taking on this challenge and enlightening us all.

    Don't worry about all the old-timers bugging you about your first build being in this century. It's not like they could have written this article!
  • arthur449 - Thursday, October 18, 2012 - link

    I'd love to see an AMD CPU test run with the same memory kits and the same test suite to contrast the differences in performance gains offered by faster memory between the two major CPU platforms.
  • lowenz - Thursday, October 18, 2012 - link

    Make an extension to this brilliant article with new Trinity A8 / A10 and you'll be an instant geek hero.
  • frozentundra123456 - Thursday, October 18, 2012 - link

    Could you do a similar test in laptops, A10 vs HD4000? Like I said in my other post, this is where I see more possibility of igps actually being used for gaming. I also think this is where HD4000 is most competitive to AMD, in a power limited scenario.
  • DanNeely - Thursday, October 18, 2012 - link

    Have laptop bios's opened up enough in the last few years to let you specify memory timings? The advice I've always seen was to buy the cheapest ram at your laptops designated clockspeed because you won't be able to set the faster timings even if you wanted.
  • haplo602 - Friday, October 19, 2012 - link

    You have ONE set for each frequency, WHY the hell are you using the stupid model numbers in the graphs ????

    WHO CAME UP WITH THAT STUPID IDEA ????

    otherwise the review is solid.

Log in

Don't have an account? Sign up now