Since you can save quite a bit of power when running at 50% CPU load and lower by enabling the "Balanced" power policy, we test our medium load (125 users) benchmark with both the "Balanced" as the "High Performance" setting.

MS SQL Server 2008

No real surprises, besides a small one: the Xeon 5650 manages to keep up with the best Xeon E5. The Xeon E5 seems to favor the lower p-states in the "Balanced" mode, as the response times double compared to high performance mode. In the case of the Xeon E5, this is not really a problem: a 2.2 GHz Xeon E5 still manages to respond as fast as a 3 GHz Opteron.

MS SQL Server 2008

Despite the fact that our server was equipped with lots of expansion capabilities, the Xeon E5 manages to keep the power consumption very low. Even the 135W TDP Xeon E5-2690 consumes 6% less than the previous generation of 95W Xeons and up to 27% less than the Opterons with the balanced power policy. The new Xeons E5 offer an unbeateable performance/watt ratio when running SQL databases.

SQL Server 2008 R2 "OLAP" Workload Rendering Performance: Cinebench
Comments Locked

81 Comments

View All Comments

  • alpha754293 - Tuesday, March 6, 2012 - link

    Thanks for running those.

    Are those results with HTT or without?

    If you can write a little more about the run settings that you used (with/without HTT, number of processes), that would be great.

    Very interesting results thought.

    It would have been interesting to see what the power consumption and total energy consumption numbers would be for these runs (to see if having the faster processor would really be that beneficial).

    Thanks!
  • alpha754293 - Tuesday, March 6, 2012 - link

    I should work with you more to get you running some Fluent benchmarks as well.

    But, yes, HPC simulations DO take a VERY long time. And we beat the crap out of our systems on a regular basis.
  • jhh - Tuesday, March 6, 2012 - link

    This is the most interesting part to me, as someone interested in high network I/O. With the packets going directly into cache, as long as they get processed before they get pushed out by subsequent packets, the packet processing code doesn't have to stall waiting for the packet to be pulled from RAM into cache. Potentially, the packet never needs to be written to RAM at all, avoiding using that memory capacity. In the other direction, web servers and the like can produce their output without ever putting the results into RAM.
  • meloz - Tuesday, March 6, 2012 - link

    I wonder if this Data Direct I/O Technology has any relevance to audio engineering? I know that latency is a big deal for those guys. In past I have read some discussion on latency at gearslutz, but the exact science is beyond me.

    Perhaps future versions of protools and other professional DAWs will make use of Data Direct I/O Technology.
  • Samus - Tuesday, March 6, 2012 - link

    wow. 20MB of on-die cache. thats ridiculous.
  • PwnBroker2 - Tuesday, March 6, 2012 - link

    dont know about the others but not ATT. still using AMD even on the new workstation upgrades but then again IBM does our IT support, so who knows for the future.

    the new xeon's processors are beasts anyways, just wondering what the server price point will be.
  • tipoo - Tuesday, March 6, 2012 - link

    "AMD's engineers probably the dumbest engineers in the world because any data in AMD processor is not processed but only transferred to the chipset."

    ...What?
  • tipoo - Tuesday, March 6, 2012 - link

    Think you've repeated that enough for one article?
  • tipoo - Wednesday, March 7, 2012 - link

    Like the Ivy bridge comments, just for future readers note that this was a reply to a deleted troll and no longer applies.
  • IntelUser2000 - Tuesday, March 6, 2012 - link

    Johan, you got the percentage numbers for LS-Dyna wrong.

    You said for the first one: the Xeon E5-2660 offers 20% better performance, the 2690 is 31% faster. It is interesting to note that LS-Dyna does not scale well with clockspeed: the 32% higher clockspeed of the Xeon E5-2690 results in only a 14% speed increase.

    E5-2690 vs Opteron 6276: +46%(621/426)
    E5-2660 vs Opteron 6276: +26%(621/492)
    E5-2690 vs E5-2660: +15%(492/426)

    In the conclusion you said the E5 2660 is "56% faster than X5650, 21% faster than 6276, and 6C is 8% faster than 6276"

    Actually...

    LS Dyna Neon-

    E5-2660 vs X5650: +77%(872/492)
    E5-2660 vs 6276: +26%(621/492)
    E5-2660 6C vs 6276: +9%(621/570)

    LS Dyna TVC-

    E5-2660 vs X5650: +78%(10833/6072)
    E5-2660 vs 6276: +35%(8181/6072)
    E5-2660 6C vs 6276: +13%(8181/7228)

    It's funny how you got the % numbers for your conclusions. It's merely the ratio of lower number vs higher number multiplied by 100.

Log in

Don't have an account? Sign up now