Enterprise Storage Bench - Microsoft SQL WeeklyMaintenance

Our final enterprise storage bench test once again comes from our own internal databases. We're looking at the stats DB again however this time we're running a trace of our Weekly Maintenance procedure. This procedure runs a consistency check on the 30GB database followed by a rebuild index on all tables to eliminate fragmentation. As its name implies, we run this procedure weekly against our stats DB.

The read:write ratio here remains around 3:1 but we're dealing with far more operations: approximately 1.8M reads and 1M writes. Average queue depth is up to 5.43.

Microsoft SQL WeeklyMaintenance - Average Data Rate

Again, huge gains from the 520 on a 6Gbps interface. Moving over to a 3Gbps interface, all of these drives basically perform the same thanks to the 3Gbps SATA limitation.

Microsoft SQL WeeklyMaintenance - Disk Busy Time

Microsoft SQL WeeklyMaintenance - Average Service Time

Enterprise Storage Bench - Microsoft SQL UpdateDailyStats Measuring How Long Your Intel SSD Will Last
Comments Locked

55 Comments

View All Comments

  • Anand Lal Shimpi - Thursday, February 9, 2012 - link

    Given enough spare area and a good enough SSD controller, TRIM isn't as important. It's still nice to have, but it's more of a concern on a drive where you're running much closer to capacity. Take the Intel SSD 710 in our benchmarks for example. We're putting a ~60GB data set on a 200GB drive with 320GB of NAND. With enough spare area it's possible to maintain low write amplification without TRIM. That's not to say that it's not valuable, but for the discussion today it's not at the top of the list.

    The beauty of covering the enterprise SSD space is that you avoid a lot of the high write amp controllers to begin with and extra spare area isn't unheard of. Try selling a 320GB consumer SSD with only 200GB of capacity and things look quite different :-P

    Take care,
    Anand
  • Stuka87 - Wednesday, February 8, 2012 - link

    Great article Anand, I have been waiting for one like this. It will really come in handy to refer back to myself, and refer others too when they ask about SSD's in an enterprise environment.
  • Iketh - Thursday, February 9, 2012 - link

    Anand's nickname should be Magnitude or the OOM Guy.
  • wrednys - Thursday, February 9, 2012 - link

    What's going on with the media wear indicator on the first screenshot? 656%?
    Or is the data meaningless before the first E4 reset?
  • Kristian Vättö - Thursday, February 9, 2012 - link

    Great article Anand, very interesting stuff!
  • ssj3gohan - Thursday, February 9, 2012 - link

    So... something I'm missing entirely in the article: what is your estimate of write amplification for the various drives? Like you said in another comment, typical workloads on Sandforce usually see WA < 1.0, while in this article it seems to be squarely above 1. Why is that, what is your estimate of the exact value and can you show us a workload that would actually benefit from Sandforce?

    This is very important, because with any reliability qualms out of the way the intel SSD 520 could be a solid recommendation for certain kinds of workloads. This article does not show any benefit to the 520.
  • Christopher29 - Thursday, February 9, 2012 - link

    Members of this forum are testing (Anvil) SSDs with VERY extreme workloads. X25-V40GB (Intel drive) has already 685 TB WRITES ! This is WAY more than 5TB suggested by Intel. They also fill drives completely! This means that your 120GB SSDs (limited even to 100GB) could withstand almost 1 PB writes. One of their 40GB Intel 320 failed after writting 400TB!
    Corsair Force 3 120GB has already 1050TB writes! You shoul reconsider your assumptions, because it seems that those drives (and large ones especially) will last much longer.

    Stats for today:
    - Intel 320 40GB – 400TB (dead)
    - Samsung 470 64GB – 490TB (dead)
    - Crucial M4 64GB – 780TB (dead)
    - Crucial M225 60GB – 840TB (dead)
    - Corsair F40A - 210TB (dead)
    - Mushkin Chronos Deluxe 60GB – 480TB (dead)
    - Corsair Force 3 120GB – 1050TB (1 PB! and still going)
    - Kingston SSDNow 40GB (X25-V) (34nm) - 640TB

    SOURCE:
    http://www.xtremesystems.org/forums/showthread.php...
  • Christopher29 - Thursday, February 9, 2012 - link

    PS: And also interestingly Force 3 (that lasted longest) is exactly SF-2281 drive? So what is it in reality Anand, does this mean that SF do write less and therefore SSD last longer?
  • Death666Angel - Thursday, February 9, 2012 - link

    In every sentence, he commented how he was being conservative and that real numbers would likely be higher. However, given the sensitive nature of business data/storage needs, I think most of them are conservative and rightly so. The mentioned p/e cycles are also just estimates and likely vary a lot. Without anyone showing 1000 Force 3 drives doing over 1PB, that number is pretty much useless for such an article. :-)
  • Kristian Vättö - Thursday, February 9, 2012 - link

    I agree. In this case, it's better to underestimate than overestimate.

Log in

Don't have an account? Sign up now