The Current Situation

It's not hard to explain why an 8-thread processor with slightly lower single-threaded performance does not do well in many desktop applications. If you compare for example the hex-core Core i7-3960X with a quad-core i7-3820, four games did not benefit from the extra two cores: Civilization V, Crysis, Dirt 3 and Metro 2033. In Starcraft 2, World of Warcraft, and Dawn of War 2, the 50% higher core count was good for a 10% performance boost at best. In other words, the situation has improved, but most games don't scale well beyond four cores. There are also other factors at play, though, as it's already known that StarCraft II doesn't use more than two cores; instead, it's likely the 15MB (vs. 10MB in i7-3820) L3 cache that helps improve performance.

The situation in the server space is a lot harder to explain. The Opteron 6100 was able to keep up—more or less—with the Xeon 5600 performancewise. However, the Xeon 5600 was equipped with much better power management and the Xeon won the performance/watt race in most applications, with the exception of HPC applications.

The Opteron 6200 added a bit of performance but sips much less power at low and medium load, so it was capable of offering a better performance per Watt ratio than its older brother. However, since the Xeon E5 came out, the situation became pretty dramatic for the Opteron. One telling example is the fact that only one VMmark 2.0 result on the Opteron 6200 exists, but it has been withdrawn. Even if the reported 12.77 score is close to truth, we need four AMD Opteron 6726 (2.3GHz) to beat the best dual Xeon E5 (2690 at 2.9GHz) by 15%.

We have shown already quite a few benchmarks in two Opteron 6276 articles and one Xeon E5 review. We summarized the relevant numbers of both articles in the table below. The benchmarks below are real world and very relevant to the professional in our opinion.

Software: Importance in the market Opteron 6276 vs.
Opteron 6174
Xeon E5-2660
vs. Opteron 6276

Virtualization: 20-50%

   
ESXi + Linux (vApusMark FOS)

+1%

+40%

OLAP Databases: 10-15%

 

 
MS SQL Server 2008 R2 (OLAP throughput)

-9%

+34%

HPC: 5-7%

 

 

LS-Dyna (Neon-Refined)

+21%

+26%

Rendering software: 2-3%

 

 

Cinebench

+2%

+37%

ERP

 

 

SAP

+18%

+13%

Now consider that all these applications are highly-threaded and scale well. Despite the 33% higher integer core count, the Opteron 6276 is not able to outperform the older Magny-Cours in the OLAP, virtualization and rendering benchmarks. However, the architecture is showing its promise by offering about 20% better performance in SAP and HPC applications.

What makes the Bulldozer cores fail in the OLAP benchmark and succeed in SAP? We now have some interesting profiling details on SAP as well as our OLAP benchmark, so we can delve deeper.

Setting Expectations: the Back End SAP S&D Benchmark in Depth
Comments Locked

84 Comments

View All Comments

  • ArteTetra - Wednesday, May 30, 2012 - link

    "A core this complex in my opinion has not been optimized to its fullest potential. Expect better performance when AMD introduces later steppings of this core with regard to power consumption and higher clock frequencies."

    You don't say?
  • JohanAnandtech - Thursday, May 31, 2012 - link

    A quote by a reader, not ours :-). The idea is probably that Bulldozer was AMD's very first implementation of their new architecture.
  • haplo602 - Wednesday, May 30, 2012 - link

    now this was a great read. finaly something interesting (the consumer benchmarks are NOT intereseted anymore for me).

    I hope there will be a differential analysis once you have Piledriver CPUs available.
  • JohanAnandtech - Thursday, May 31, 2012 - link

    Piledriver analysis: definitely. Thanks for the encouraging words :-)
  • mikato - Friday, June 1, 2012 - link

    I agree - great critical thinking in this article! This subject definitely needed more research.
  • Spunjji - Wednesday, June 6, 2012 - link

    +1. This is the sort of thing I come here for!
  • Beenthere - Wednesday, May 30, 2012 - link

    Expecting Vishera to be an Intel killer is foolish as it's not going to happen and there is no need for it to happen. Ivy Bridge is very much like FX in that it's only 5% faster than SB and runs hot. At least FX chips OC and scale well unlike Ivy Bridge.

    If AMD can use some of the techniques imployed in Trinity they should be able to get a 15+% improvement over the FX CPUs. This combined with higher clockspeeds now that GloFo has sorted 32nm production should provide a nice performance bump in Vishera.

    95% of consumers do not buy the fastest, most over-hyped and over-priced CPU on the planet for their PC or server apps. Mainstream use is what AMD is shooting for at the moment and doing pretty well at it. Eventually they will release APUs for all PC market segments that perform well, use less power and cost less than discrete CPU/GPU combo. THAT is what 95% of the X86 world will be using.
  • Homeles - Wednesday, May 30, 2012 - link

    "Ivy Bridge is very much like FX in that it's only 5% faster than SB and runs hot"

    I think you need to go read about Intel's tick-tock strategy.

    Also, unlike Bulldozer, Ivy Bridge was a step forward. A small one, but performance per watt went up, while with Bulldozer it often went backwards.

    Process maturity from GloFo will help, but probably not as much as you would think.

    Finally, "95% of users" aren't going to benefit best from a processor built with server workloads in mind. Even with server workloads, Bulldozer fails to deliver. APUs are definitely the future, but keep in mind that Intel's had an APU out for as long as AMD has. If you think that AMD's somehow going to pull a fast one on Intel, you're delusional. Intel and Nvidia as well are very, very well aware of heterogeneous computing.
  • The_Countess - Wednesday, May 30, 2012 - link

    looking at how much the performance per watt went up with piledriver compared with llano, I think they''ll have a lot more headroom on the desktop and server space to increase the clock frequencies to where they are suppose to be with the bulldozer launch.
  • Homeles - Wednesday, May 30, 2012 - link

    Yeah, Piledriver will likely perform the way AMD had intended Bulldozer to perform.

Log in

Don't have an account? Sign up now