OCZ Listens, Again

I promised you all I would look into this issue when I got back from MWC. As is usually the case, a bunch of NDAs showed up, more product releases happened and testing took longer than expected. Long story short, it took me far too long to get around to the issue of varying NAND performance in SF-1200 drives.

What put me over the edge was the performance of the 32nm Hynix drives. For the past two months everyone has been arguing over 34nm vs 25nm however the issue isn't just limited to those two NAND types. In fact, SSD manufacturers have been shipping varying NAND configurations for years now. I've got a stack of Indilinx drives with different types of NAND, all with different performance characteristics. Admittedly I haven't seen performance vary as much as it has with SandForce on 34nm IMFT vs. 25nm IMFT vs. 32nm Hynix.

I wrote OCZ's CEO, Ryan Petersen, and Executive Vice President, Alex Mei, an email outlining my concerns last week:

Here are the drives I have:

34nm Corsair F120 (Intel 34nm NAND, 64Gbit devices, 16 devices total)
34nm OCZ Vertex 2 120GB (Hynix 32nm NAND, 32Gbit devices, 32 devices total)
25nm OCZ Vertex 2 120GB (Intel 25nm NAND, 64Gbit devices, 16 devices total)

Here is the average data rate of the three drives through our Heavy 2011 Storage Bench:

34nm Corsair F120 - 120.1 MB/s
34nm OCZ Vertex 2 120GB - 91.1 MB/s
25nm OCZ Vertex 2 120GB - 110.9 MB/s

It's my understanding that both of these drives (from you all) are currently shipping. We have three different drives here, based on the same controller, rated at the same performance running through a real-world workload that are posting a range of performance numbers. In the worst case comparison the F120 we have here is 30% faster than your 32nm Hynix Vertex 2.

How is this at all acceptable? Do you believe that this is an appropriate level of performance variance your customers should come to expect from OCZ?

I completely understand variance in NAND speed and that you guys have to source from multiple vendors in order to remain price competitive. But something has to change here.

Typically what happens in these situations is that there's a lot of arguing back and forth, with the company in question normally repeating some empty marketing line because admitting the truth and doing the right thing is usually too painful. Thankfully while OCZ may be a much larger organization today than just a few years ago, it still has a lot of the DNA of a small, customer-centric company.

Don't get me wrong - Ryan and I argued back and forth like we normally do. But the resolution arrived far quicker and it was far more agreeable than I expected. I asked OCZ to commit to the following:

1) Are you willing to commit, publicly and within a reasonable period of time, to introducing new SKUs (or some other form of pre-purchase labeling) when you have configurations that vary in performance by more than 3%?

2) Are you willing to commit, publicly and within a reasonable period of time, to using steady state random read/write and steady state sequential read/write using both compressible and incompressible data to determine the performance of your drives? I can offer suggestions here for how to test to expose some of these differences.

3) Finally, are you willing to commit, publicly and within a reasonable period of time, to exchanging any already purchased product for a different configuration should our readers be unhappy with what they've got?

Within 90 minutes, Alex Mei responded and gave me a firm commitment on numbers 1 and 3 on the list. Number two would have to wait for a meeting with the product team the next day. Below are his responses to my questions above:

1) Yes, I've already talked to the PM and Production team and we can release new skus that are labeled with a part number denoting the version. This can be implemented on the label on the actual product that is clearly visable on the outside of the packaging. As mentioned previously we can also provide more test data so that customers can decide based on all factors which drive is right for them.

2) Our PM team will be better able to answer this question since they manage the testing. They are already using an assortment of tests to rate drives and I am sure they are happy to have your feedback in regards to suggestions. Will get back to you on this question shortly.

3) Yes, we already currently do this. We want all our customers to be happy with the products and any customer that has a concern about thier drives is welcome to come to us, and we always look to find the best resolution for the customer whether that is an exchange to another version or a refund if that is what the customer prefers.

I should add that this conversation (and Alex's agreement) took place between the hours of 2 and 5AM:

I was upset that OCZ allowed all of this to happen in the first place. It's a costly lesson and a pain that we have to even go through this. But blanket acceptance of the right thing to do is pretty impressive.

The Terms and Resolution

After all of this back and forth here's what OCZ is committing to:

In the coming weeks (it'll take time to filter down to etailers) OCZ will introduce six new Vertex 2 SKUs that clearly identify the process node used inside: Vertex 2.25 (80GB, 160GB, 200GB) and Vertex 2.34 (60GB, 120GB, 240GB). The actual SKUs are below:

OCZ's New SKUs
OCZ Vertex 2 25nm Series OCZ Vertex 2 34nm Series
OCZSSD2-2VTX200G.25 OCZSSD2-2VTX240G.34
OCZSSD2-2VTX160G.25 OCZSSD2-2VTX120G.34
OCZSSD2-2VTX80G.25 OCZSSD2-2VTX60G.34

These drives will only use IMFT NAND - Hynix is out. The idea is that you should expect all Vertex 2.25 drives to perform the same at the same capacity point, and all Vertex 2.34 drives will perform the same at the same capacity as well. The .34 drives may be more expensive than the .25 drives, but they also may be higher performance. Not all capacities are present in the new series, OCZ is starting with the most popular ones.

OCZ will also continue to sell the regular Vertex 2. This will be the same sort of grab-bag drive that you get today. There's no guarantee of the NAND inside the drive, just that OCZ will always optimize for cost in this line.

OCZ also committed to always providing us with all available versions of their drives so we can show you what sort of performance differences exist between the various configurations.

If you purchased a Vertex 2 and ended up with lower-than-expected performance or are unhappy with your drive in any way, OCZ committed to exchanging the drive for a configuration that you are happy with. Despite not doing the right thing early on, OCZ ultimately commited to doing what was right by its customers.

As far as ratings go - OCZ has already started publishing AS-SSD performance scores for their drives, however I've been pushing OCZ to include steady state (multiple hour test runs) incompressible performance using Iometer to provide a comprehensive, repeatable set of minimum performance values for their drives. I don't have a firm commitment on this part yet but I expect OCZ will do the right thing here as well.

I should add that this will be more information than any other SandForce drive maker currently provides with their product specs, but it's a move that I hope will be mirrored by everyone else building drives with varying NAND types.

The Vertex 2 is going to be the starting point for this sort of transparency, but should there be any changes in the Vertex 3 lineup OCZ will take a similar approach.

The NAND Matrix The Vertex 3 120GB
Comments Locked

153 Comments

View All Comments

  • kensiko - Thursday, April 7, 2011 - link

    It's true, I never saw any big company letting customers having so much impact on them. The forum is really the big thing here.
  • lukechip - Wednesday, April 6, 2011 - link

    I've just bought an 80GB Vertex 2. OCZ state that only "E" parts are affected, but at StorageReview, they show that they had a non "E" part which contained 25nm NAND. Also, OCZ say that the only parts affected are the 60 GB and 120 GB models.

    I've just purchased an 80 GB model, and have no idea what is inside it, nor whether I'd prefer it to be an 'old' one or a 'new' one.

    The new SKUs that Anand listed indicate that moving forwards, all 80, 160 and 200 GB Vertex 2 units will be 25nm only, and all 60, 120 and 240 GB Vertex 2 units will be 34nm only. I can't imagine they can keep this up for long, as 34nm runs out and they have to move the 60, 120 and 240 GB models to 25 nm.

    What I suspect is that prior to 25 nm NAND becoming available, all 80 GB units used the Hynix 32 nm NAND. Based on Anand's tests, I suspect this mean they were the worst performing units in the line up. 80 GB units built using the new 25 nm NAND would actually perform better than those built with Hynix 32 nm NAND.

    So whereas 60 GB and 120 GB customers really want to have a unit based on 34 nm NAND, 80 GB customers like me really want to have a drive based on 25 nm NAND. Hence OCZ are not offering replacements for 80 GB units. A new 80 GB unit is better than an old 80 GB unit, even though it is not as good as an old 60 GB unit

    So my questions are:

    1/ Is what I am suggesting above true ?
    2/ How can I tell what NAND I've got ? I've updated the firmware on my 80 GB unit soon after buying it, so the approach of using firmware version to determine NAND type doesn't seem too reliable to me ?

    Personally, I find my unit plenty fast enough. And I understand that OCZ and other SSD vendors must accomodate what their suppliers present them with. However the lack of tranparency, and the "lucky dip" approach that we have to take when buying an SSD from OCZ lead me to conclude that they

    1/ don't respect their customers and/or
    2/ are very naive and stupid to expect that customers won't notice them pulling a 'bait and switch'
  • B3an - Thursday, April 7, 2011 - link

    Anand... you seem to have forgotten something in your conclusion. You say it's best to go for the 240GB if torn between that and the 120GB. But being as two 120GB Vertex 3's are only very slightly more expensive than the 240GB version, wouldn't it make more sense to just get two 120GB's for RAID 0? Because you'd get considerably better performance than the 240GB then considering how well SSD's scale in RAID 0.

    Really great and interesting review BTW.
  • Alopex - Thursday, April 7, 2011 - link

    I'd really like to see this question addressed, as well. According to several tests, SSDs scale in pretty much all categories after a minimal queue depth. It seems like the random reads here are the 120gb model's achilles' heel, but given the linearity of the scaling, it might be safe-ish to assume that 2x 120gb RAID 0 will equal 1x 240gb. For nearly the same price, it would then seem you get the same storage size, fixed the discrepancy between the two models, and hopefully see significant performance gains in the other categories like sequential read/write.

    I'm building a new computer at the moment, and in light of this article, I'm still planning to go with 2x 120gb Vertex 3s in RAID 0, unless someone can provide a convincing argument to do otherwise. At the moment, the only thing that really makes me hesitate is to see what the other vendors have planned for "next-gen" SSD performance. Then again, if I had that attitude I'd be waiting forever ;-)

    Many thanks for the article, though!
  • casteve - Thursday, April 7, 2011 - link

    No TRIM available in RAID.
  • B3an - Thursday, April 7, 2011 - link

    Not a big problem. I've had 3 different SSD sets in RAID 0 over the years, and i've not needed TRIM. And a certain crappy OS with a fruity theme dont even support TRIM without a hack job.
  • ComputerNovice22 - Thursday, April 7, 2011 - link

    You wrote "
    In the worst case comparison the F120 we have here is 30% faster than your 34nm Hynix Vertex 2."

    I believe you meant 32nm Hynix, I'm not sure I'm right or not and I'm not trying to be one of those people that just likes to be right either, just wanted to let you know just in-case.

    On another note though I LOVE the article, I bought a vertex 2 recently and I was very angry with OCZ after I hooked it up and realized it was a 25nm SSD ... I ended up just buying a 120Gb (510 elm-crest)
  • Lux88 - Thursday, April 7, 2011 - link

    1. Thank you for investigating NAND performance so thoroughly.
    2. Thank you for benching drives with "common" capacities.
    3. Thank you for protecting consumer interests.

    Great article. Great site. Fantastic Anand.
  • sor - Thursday, April 7, 2011 - link

    I worked at a Micron test facility years ago. I can only speak for DRAM, but I imagine NAND is much the same. Whenever someone drops a tray of chips and they go sprawling all over the floor... SpekTek. Whenever a machine explodes and starts crunching chips... SpekTek. I used to laugh when I saw PNY memory in BestBuy with a SpecTek mark on its chips selling for 2x what good RAM at newegg would cost.

    Basically anything that's dropped, damaged, or doesn't meet spec somehow, gets put into SpecTek and re-binned according to what it's now capable of. It's a brand that allows Micron to make money off of otherwise garbage parts, without diluting their own brand. On the good end the part may have just had some bent leads that needed to be fixed, on the bad end the memory can be sold and run at much slower specs or smaller capacity (blowing fuses in the chip to disable bad parts), or simply scrapped altogether.
  • sleepeeg3 - Thursday, April 7, 2011 - link

    Thanks for the info, but IMO the bottom line is if it works reliably and it allows them to deliver something at a lower price, I am all for it. If it backfires on them and they get massive failure rates, consumers will respond by buying someone else's product. That's the beauty of capitalism.

Log in

Don't have an account? Sign up now