Overall System Performance using PCMark Vantage

Next up is PCMark Vantage, another system-wide performance suite. For those of you who aren’t familiar with PCMark Vantage, it ends up being the most real-world-like hard drive test I can come up with. It runs things like application launches, file searches, web browsing, contacts searching, video playback, photo editing and other completely mundane but real-world tasks. I’ve described the benchmark in great detail before but if you’d like to read up on what it does in particular, take a look at Futuremark’s whitepaper on the benchmark; it’s not perfect, but it’s good enough to be a member of a comprehensive storage benchmark suite. Any performance impacts here would most likely be reflected in the real world.

PCMark Vantage

Our PCMark Vantage scores echo what we've seen already - the SF-2500 really needs a 6Gbps controller to shine.

PCMark Vantage - Memories Suite

PCMark Vantage - TV & Movies Suite

PCMark Vantage - Gaming Suite

PCMark Vantage - Music Suite

PCMark Vantage - Communications Suite

PCMark Vantage - Productivity Suite

PCMark Vantage - HDD Suite

AS-SSD High Queue Depth Incompressible Sequential Performance SYSMark 2007
Comments Locked

144 Comments

View All Comments

  • sheh - Thursday, February 17, 2011 - link

    Why's data retention down from 10 years to 1 year as the rewrite limit is approached?
    Does this mean after half the rewrites the retention is down to 5 years?
    What happens after that year, random errors?
    Is there drive logic (or standard software) to "refresh" a drive?
  • AnnihilatorX - Saturday, February 19, 2011 - link

    Think about how Flash cell works. There is a thick Silicon Dixoide barrier separating the floating gate with the transistor. The reason they have a limited write cycle is because the Silion dioxide layer is eroded when high voltages are required to pump electrons to the floating gate.

    As the SO2 is damaged, it is easier for the electrons in the floating gate to leak, eventually when sufficient charge is leaked the data is loss (flipped from 1 to 0)
  • bam-bam - Thursday, February 17, 2011 - link

    Thanks for the great preview! Can’t wait to get a couple of these new SDD’s soon.

    I’ll add them to an even more anxiously-awaited high-end SATA-III RAID Controller (Adaptec 6805) which is due out in March 2011. I’ll run them in RAID-0 and then see how they compare to my current set up:

    Two (2) Corsair P256 SSD's attached to an Adaptec 5805 controller in RAID-0 with the most current Windows 7 64-bit drivers. I’m still getting great numbers with these drives, almost a year into heavy, daily use. The proof is in pudding:

    http://img24.imageshack.us/img24/6361/2172011atto....

    (1500+ MB/s read speeds ain’t too bad for SATA-II based SSD’s, right?)

    With my never-ending and completely insatiable need-for-speed, I can’t wait to see what these new SATA-III drives with the new Sand-Force controller and a (good-quality) RAID card will achieve!
  • Quindor - Friday, February 18, 2011 - link

    Eeehrmm.....

    Please re-evaluatue what you have written above and how to preform benchmarks.

    I too own a Adaptec 5805 and it has 512MB of cache memory. So, if you run atto with a size of 256MB, this fits inside the memory cache. You should see performance of around 1600MB/sec from the memory cache, this is in no way related to what your subsystem storage can or cannot do. A single disk connected to it but just using cache will give you exactly the same values.

    Please rerun your tests set to 2GB and you will get real-world results of what the storage behind the card can do.

    Actually, I'm a bit surprised that your writes don't get the same values? Maybe you don't have your write cache set to write back mode? This will improve performance even more, but consider using a UPS or a battery backup cache module before doing so. Same thing goes for allowing disk cache or not. Not sure if this settings will affect your SSD's though.

    Please, analyze your results if they are even possible before believing them. Each port can do around 300MB/sec, so 2x300MB/sec =/= 1500MB/sec that should have been your first clue. ;)
  • mscommerce - Thursday, February 17, 2011 - link

    Super comprehensible and easy to digest. I think its one of your best, Anand. Well done!
  • semo - Friday, February 18, 2011 - link

    "if you don't have a good 6Gbps interface (think Intel 6-series or AMD 8-series) then you probably should wait and upgrade your motherboard first"

    "Whenever you Sandy Bridge owners get replacement motherboards, this may be the SSD you'll want to pair with them"

    So I gather AMD haven't been able to fix their SATA III performance issues. Was it ever discovered what the problem is?
  • HangFire - Friday, February 18, 2011 - link

    The wording is confusing, but I took that to mean you're OK with Intel 6 or AMD 8.

    Unfortunately, we may never know, as Anand rarely reads past page 4 or 5 of the comments.

    I am getting expected performance from my C300 + 890GX.
  • HangFire - Friday, February 18, 2011 - link

    OK here's the conclusion from 3/25/2010 SSD/Sata III article:

    "We have to give AMD credit here. Its platform group has clearly done the right thing. By switching to PCIe 2.0 completely and enabling 6Gbps SATA today, its platforms won’t be a bottleneck for any early adopters of fast SSDs. For Intel these issues don't go away until 2011 with the 6-series chipsets (Cougar Point) which will at least enable 6Gbps SATA. "

    So, I think he is associating "good 6Gbps interface) with 6&8 series, not "don't have" with 6&8.
  • semo - Friday, February 18, 2011 - link

    Ok I think I get it thanks HangFire. I remember that there was an article on Anandtech that tested SSDs on AMD's chipsets and the results weren't as good as Intel's. I've been waiting ever since for a follow up article but AMD stuff doesn't get much attention these days.
  • BanditWorks - Friday, February 18, 2011 - link

    So if MLC NAND mortality rate ("endurance") dropped from 10,000 cycles down to 5,000 with the transition to 34nm manufacturing tech., does that mean that the SLC NAND mortality rate of 100,000 cycles went down to ~ 50,000?

    Sorry if this seems like a stupid question. *_*

Log in

Don't have an account? Sign up now