Security: AES-256 and Double Encryption

The SF-1200/1500 controllers have a real time AES-128 encryption engine. Set a BIOS password and the drive should be locked unless you supply that password once again (note I haven’t actually tried this). The SF-2000 implements an AES-256 engine and supports double encryption. The former enables stronger encryption, while the latter allows you to set a different encryption key for multiple address ranges on the drive.

Enhanced ECC

As NAND densities go up, so will error rates and in response SandForce boosted the error correction engine on its controller. The SF-2000 error checks and corrects at a 512-byte granularity with a 55-bit BCH, up from 24-bits per 512-bytes.

The Family

SandForce is announcing three parts today: the SF-2300, SF-2500 and SF-2600. All three controllers have the same performance specs but differ in features.

The SF-2500 is the base enterprise drive. For industrial use there’s the SF-2300 that can operate at more ridiculous temperatures. The SF-2600 ships with the external SAS bridge and a special firmware revision to enable support for non-512B sectors.

Many enterprise storage systems use larger-than-512B sectors to store error correction information among other things. These sizes can be awkward like 520 bytes, 524 bytes, 528 bytes or even a 4K sector with an additional data integrity field. Currently the SF-1200/1500 controllers support these non-standard sector sizes, but you run into performance issues since writes aren’t aligned to how the drive is organized internally. With the SF-2600, there’s firmware support for any one of these sector types. The drive handles alignment issues in hardware, presumably without any performance overhead. SandForce indicated that you’d need to configure the drive for sector size in the firmware, meaning the adjustment isn’t dynamic.

Since this is a very particular type of enterprise SSD feature that’s usually seen in SAS devices, the SF-2600 is paired with a native SAS to SATA bridge. The controller is still SATA internally but the SF-2600 reference design will feature a SAS bridge on-board.

All of the enterprise SF-2000 controllers support TRIM. They also support performance throttling based on remaining program/erase cycles on the drive’s NAND (slow down the drive so the NAND lasts longer, as well as power based performance throttling (slow down the drive to reduce power consumption). SandForce hasn’t announced power specs for the SF-2000 drives, but given Intel’s drive power went up with the 3rd generation X25s I would expect something similar here.

The consumer member of the SF-2000 family will be announced sometime early next year. We will hopefully see a fairly high end version of the consumer part, missing only the enterprise specific features but retaining all of the performance.

Performance: Welcome to the 500 Club Final Words
Comments Locked

84 Comments

View All Comments

  • mino - Thursday, October 7, 2010 - link

    Not really. Remember how 5 Watt VIA chips crushed 130W quad cores by HW accelerating it.
    Encryption is not that hard for specialized circuitry.
  • DesktopMan - Thursday, October 7, 2010 - link

    "The SF-1200/1500 controllers have a real time AES-128 encryption engine. Set a BIOS password and the drive should be locked unless you supply that password once again (note I haven’t actually tried this)."

    Why don't you? No site I've found have and this would differentiate AnandTech. Surely it's of interest for anyone with a laptop?
  • theagentsmith - Thursday, October 7, 2010 - link

    As a Sandforce SSD owner (60GB Corsair Force) I hope they won't forget SF-1200 customers and release a firmware that fixes random disappearing drives. while the computer is working as well as in idle. There is a 30-page topic on Corsair forums about this.
    My drive so far stuck three times since the end of July, so you can live with it even if it's a bit annoying, but there are reports of suddenly erased drives. The firmware here is the key, and as Anand has already shown they aren't flawless.

    About SF-2000 drives, it would be interesting to see if there is a benefit switching from an "old" SF-1200 drive from the consumer perspective. Half a gigabyte in a second is pretty astounding, but if it translates into less than a second faster at loading a software, I suppose Intel 25nm's drives could be better because of their cost per gigabyte.
  • beginner99 - Friday, October 8, 2010 - link

    Interesting. Also the other comments. Did not know that sf-drives have so much issues. Well I'm glad now I went conservative an bought an Intel 80 Gb drive. No issues till now and it's fast enough for me. My PC now boots faster than most other devices like my mobile phone (And I don't even have one of those fancy ones).
  • Makaveli - Thursday, October 7, 2010 - link

    Thank you for posting your real world experience agent smith, i've seen alot of people talking about these drives but also alot of people saying once you hit data it can't compress its start to get slower than intel drives.

    I will be waiting for real benchmarks aswell because right now those are just controller specs and the actual retail product might be slower I also highly doubt they will release consumer drives that read/write at 500/500 if they can actually live up to this performance.

    After looking at the intel specs again I understand why they aren't going balls out for speed, reliablity and capacity are bigger driving factors in the current market people wants prices to go down and size up more so than 500mb/s.

    Q1 2011 will be interesting.... alot of people said in 2009 that 2010 will be the year for SSD's well I think they were off by a year.
  • toast2 - Thursday, October 7, 2010 - link

    After their announcement of first generation product, which was extremely buggy,
    it took 1.5 yrs to make it work.
    Let's see how long this one takes.
    Rumor is that they have issues with sequential bandwidth.
  • Sublym3 - Friday, October 8, 2010 - link

    Just a small question, I have wondered if normal drive imaging/cloning is still possible on SandForce based drives? and are there any limitations to the type of drives that the image can be restored to.

    "SandForce’s controller gets around the inherent problems with writing to NAND by simply writing less. Using real time compression and data deduplication algorithms, the SF controllers store a representation of your data and not the actual data itself. The reduced data stored on the drive is also encrypted and stored redundantly across the NAND to guarantee against dataloss from page level or block level failures. Both of these features are made possible by the fact that there’s simply less data to manage. "

    When I read that it makes it sound like you would not get a proper image of a drive. I am currently using Acronis software to make images of my own computers which use Intel SSD's and everything seems to work fine.
  • Keatah - Friday, October 15, 2010 - link

    You would get a drive image just fine. All the remapping and compression and redundant storing and encryption AND wear-leveling happen behind the scenes.

    Acronis would only see the data and 'sectors'.. Sector 1 *IS* sector 1, regardless of where it is stored on the drive. Sector 1's data may be spread across several pages or blocks and chips. But that is irrelevant.

    If you ask for data at sector 1, you get data from sector 1. Simple as that. So yes, it will work just fine.
  • HachavBanav - Friday, October 8, 2010 - link

    2 facts:
    -A single NAND (dual plane) reads 330MB/s and writes 33MB/s
    -Controllers looks like being capable of aggregating the bandwidth of more and more NAND

    Hypothesis 2012:
    -A quad plane NAND may reads 660MB/s and writes 66MB/s (using 16KB page)
    -Controllers may read/write from 8 NAND simultaneously (think of a 128KB stripe)
    ==> Reads @ 4GB/s and Writes @ 500MB/s may be expected !

    This clearly means we are facing an INTERFACE bandwidth bottleneck !!!

    SAS 3Gb or SATA II and their 300MB/s are just ridiculous
    ...but SAS 6Gb and SATA III and their 600MB/s looks already outdated

    What's next for those SSD interfaces :
    -SAS or SATA 12Gb ? Not mature enough !
    -FC 16Gb ? Always been so pricey !
    -100Gb Ethernet and iSCSI embedded ? This is a revolution !
    -Infiniband 40Gb ? A good challenger !
  • Chloiber - Friday, October 8, 2010 - link

    I think the only possible "short term" solution will be PCIe...

    But to be honest: I think we need to stop somewhere. No home user needs 4GB/s. I rather have a really stable, cheap 1GB/s drive, with a robust firmware than a 4GB/s unstable thing I don't need.
    Of course - faster is always better, and there will be a time where 4GB/s + stable + cheap is possible, but seriously...the computers of today are too slow to handle this (talking about IOPS now). You probably won't see a difference between a 100k IOPS drive and a 30k IOPS drive using a hexacore. The bottleneck in real performance isn't the drive anymore, it's the CPU (at least with about 2-3 drives on external controller).

    So yeah - to be honest, I don't really care about huuuuuge numbers anymore - all I want is a cheap, really stable, bug-free, big drive with nice performance.

Log in

Don't have an account? Sign up now