“AMD in many cases delivers greater performance than the similarly priced Intel CPUs, but not nearly a large enough performance gap to make up for the difference in die size. Again, great for consumers, but potentially painful for AMD in the long run. As yields improve AMD should be able to make more of these cores members of the 900 family, but without a separate, smaller die there will still be economic inefficiencies at the lower end.”

“AMD’s Phenom II is very competitive, but the strategy does not have much long term staying power. AMD needs to introduce smaller die versions of its CPUs soon.”

Ask and you shall receive, right?

Intel did a bang up job tarnishing the Pentium name with its clock speed rampage during the Pentium 4 days, but the Athlon brand still holds a special place in our hearts.

This is the Athlon II, and it’s exactly what I’ve been asking for:

The Athlon II X2, to be specific, is a 45nm monolithic dual-core processor.  While the most recent Athlon X2s are derivatives of the original Phenom architecture, the Athlon II is based on the new and improved Phenom II architecture.


The name lives on

Take two Phenom II cores, increase their L2 caches to 1MB, leave out the L3 and you’ve got an Athlon II.  The entire die measures only 117.5 mm^2 and is made up of a meager 234 million transistors.  The table below compares the Athlon II’s die size to other competing parts:

Processor Cores Manufacturing Process L1 Cache L2 Cache L3 Cache Die Size Transistor Count
AMD Phenom II X2 2 45nm 128KB per core 1MB 6MB 258 mm2 758M
AMD Athlon II X2 2 45nm 128KB per core 1MB per core 0MB 117 mm2 234M
AMD Athlon X2 2 65nm 128KB per core 512KB per core 2MB 285 mm2 450M
AMD Athlon 64 X2 2 65nm 128KB per core 512KB per core 0MB 126 mm2 154M
Intel Pentium for Desktop 2 45nm 64KB per core 2MB 0MB 82 mm2 228M

 

The new Athlon II is actually AMD’s smallest dual core processor ever, even smaller than the original Athlon 64 X2.  It’s also AMD’s first 45nm dual-core processor.  It’s also AMD’s first Socket-AM3 processor to carry the Athlon brand (ok, I’ll stop).  As an AM3 chip it will work in both AM3 and AM2+ motherboards, just like the Phenom II.

The Athlon II is only launching with one model today the 3.0GHz Athlon II X2 250.  Priced at $87, it’s likely that we won’t see more Athlon II X2s until AMD is ready to further switch its lineup over to 45nm in order to keep up with demand.

The Phenom II X2 550 BE

We actually get two new dual-core chips today, the second is the new Phenom II X2 550 Black Edition.  Like all of the other chips in the Phenom II lineup, the X2 550 is simply a die-harvested Phenom II X4 part.  In other words, what we have is a quad-core Phenom II with two of its cores disabled.  Given that it’s still fairly early in GlobalFoundries’ 45nm manufacturing process, it makes sense to see so many harvested parts.  I would expect these Phenom II X2 and perhaps even the X3 derivatives to either disappear or shift out of the limelight as AMD’s yields improve.

Because it’s based on the quad-core Phenom II processor, the X2 550 BE has a full 6MB L3 cache that the two cores can share.  The L2 caches are still stuck at 512KB but with a large 6MB L3, there’s very little to complain about.  The unlocked Black Edition part runs at 3.1GHz and retails for $102.

Availability and New Energy Efficient Phenom IIs

AMD is expecting availability for both of these parts in the next week or so.

The table below shows AMD’s new lineup with these two chips.  Note that I’ve also included data on the Phenom II X4 905e and the Phenom II X3 705e.  These two CPUs run at 2.5GHz and have a 65W TDP, down from 125W and 95W for all previous AM3 parts.

Processor Cores Clock Speed un-core Clock L2 Cache L3 Cache TDP Price
AMD Phenom II X4 955 BE 4 3.2GHz 2.0GHz 2MB 6MB 125W $245
AMD Phenom II X4 945 4 3.0GHz 2.0GHz 2MB 6MB 125W $225
AMD Phenom II X4 940 BE 4 3.0GHz 1.8GHz 2MB 6MB 125W $225
AMD Phenom II X4 920 4 2.8GHz 1.8GHz 2MB 6MB 125W $195
AMD Phenom II X4 910 4 2.6GHz 2.0GHz 2MB 6MB 95W $???
AMD Phenom II X4 905e 4 2.5GHz 2.0GHz 2MB 6MB 65W $195
AMD Phenom II X4 810 4 2.6GHz 2.0GHz 2MB 4MB 95W $175
AMD Phenom 9950 4 2.6GHz 2.0GHz 2MB 2MB 140W $173
AMD Phenom II X4 805 4 2.5GHz 2.0GHz 2MB 4MB 95W $???
AMD Phenom II X3 720 BE 3 2.8GHz 2.0GHz 1.5MB 6MB 95W $145
AMD Phenom II X3 710 3 2.6GHz 2.0GHz 1.5MB 6MB 95W $125
AMD Phenom II X3 705e 3 2.5GHz 2.0GHz 1.5MB 6MB 65W $125
AMD Phenom II X2 550 BE 2 3.1GHz 2.0GHz 1MB 6MB 80W $102
AMD Athlon II X2 250 2 3.0GHz 2.0GHz 2MB 0MB 65W $87
AMD Athlon X2 7850 2 2.8GHz 1.8GHz 1MB 2MB 95W $69

And just for kicks here's a specs table with both AMD and Intel CPUs in it:

Processor Cores Manufacturing Process L1 Cache L2 Cache L3 Cache Die Size Transistor Count
AMD Phenom II X4 4 45nm 128KB per core 2MB 6MB 258 mm2 758M
AMD Phenom II X3 3 45nm 128KB per core 2MB 6MB 258 mm2 758M
AMD Phenom II X2 2 45nm 128KB per core 2MB 6MB 258 mm2 758M
AMD Athlon II X2 2 45nm 128KB per core 1MB per core 0MB 117 mm2 234M
AMD Athlon X2 2 65nm 128KB per core 512KB per core 2MB 285 mm2 450M
AMD Athlon 64 X2 2 65nm 128KB per core 512KB per core 0MB 126 mm2 154M
Intel Core i7 4 45nm 64KB per core 256KB per core 8MB 263 mm2 731M
Intel Core 2 Quad 4 45nm 64KB per core 12MB 0MB 214 mm2 820M
Intel Core 2 Quad 4 45nm 64KB per core 4MB 0MB 164 mm2 456M
Intel Core 2 Duo 2 45nm 64KB per core 6MB 0MB 107 mm2 410M
Intel Core 2 Duo 2 45nm 64KB per core 3MB 0MB 82 mm2 228M
Intel Pentium 2 45nm 64KB per core 2MB 0MB 82 mm2 228M
Athlon II X2: Hardware C1E and Return of the CnQ Bug
POST A COMMENT

56 Comments

View All Comments

  • TA152H - Tuesday, June 02, 2009 - link

    I agree with almost everything you say, I only have a small caveat.

    Intel chips will suffer much less from this than AMD, since they have an inclusive cache architecture, and can readily read the information from the L3 cache. I still think AMD has an exclusive cache arrangement, which I really think they should change with regards to the L3 cache for reasons just like the one you mention.

    For what's it's worth, Microsoft screwed Intel 14 years back when the Pentium Pro was released. Naturally, Intel got the blame for having miserable 16-bit performance (it was related to segmentation, which was part of all the 16-bit modes, and technical, even 32-bit mode even though it was transparent), because Microsoft told them the world will be 32-bit by then. Of course Windows 95 had a lot of legacy code, and Windows NT, which we called "Not There" at the time, was about as common as a 20 year old virgin in western Europe. So, Intel took the blame, just like AMD is now, despite, once again, Microsoft's incompetence.

    Really, if you think about it, the ability to clock the processors differently could be a very useful features, except for the fact Winblows can't use it properly.

    Good
    Reply
  • TA152H - Tuesday, June 02, 2009 - link

    First, I like seeing the Pentium 4s in the benchmarks, it was kind of interesting. They did better than I thought they would, and it makes me even more curious what they would be like on 45nm, since their clock speeds would probably be astronomical (since 45nm has much better power characteristics, and the clock speed limiter on the Pentium 4 was power use/heat).

    But, anyway, why not use the Pentium 4 670 (3.8 GHz), or Pentium EE 965 Extreme Edition (3.73 GHz) processors? Why use the next to fastest ones?

    Don't get me wrong, it was still informative, but I would have liked to see the fastest measured against today's processors, not one step removed. Even so, it was nice to see them, so it's just a minor complaint. I'm looking forward to seeing the Nano.
    Reply
  • strikeback03 - Wednesday, June 03, 2009 - link

    Might not have had any around. Figure the "best of breed" were the most likely to be either sold or go in a system for some family member when they were no longer needed for comparison duties. Reply
  • ShangoY - Tuesday, June 02, 2009 - link

    I am curious as to why the current cheapest Intel quad core were not included in the benches yet you bothered to go grab the previously $999 Pentium 4 and then also included the Phenom X4 940. Reply
  • Gary Key - Tuesday, June 02, 2009 - link

    http://www.anandtech.com/bench/default.aspx?b=2">http://www.anandtech.com/bench/default.aspx?b=2 - You can compare them here. Reply
  • Kenzid - Tuesday, June 02, 2009 - link

    Does any body know why AMD transistor density is very low compare to Intel? Is this because of Intel High K metal process or the architechture? Reply
  • Goty - Tuesday, June 02, 2009 - link

    It's more than likely due to the fact that Intel has much higher cache densities than AMD does. It probably had very little to nothing to do with the actual process (well, beyond the geometry size, that is). Reply
  • TA152H - Tuesday, June 02, 2009 - link

    What are you basing that on?

    Typically, cache is very dense, so you will notice transistor count increasing disproportionately to size as you add cache.

    With respect to the Athlon II X2 being larger than the Penryn, that's not really a bad thing, since it does more too; the Penryn needs a memory controller on the chipset that the Athlon II does not.
    Reply
  • Kenzid - Tuesday, June 02, 2009 - link

    Based on above die size chart. Core2Duo 107mm2 and 410million transistors while Athlon II has only 234million transistors on 117mm2. It's almost half of the number of Intel used on theirs. IMC take that much space? Reply
  • TA152H - Tuesday, June 02, 2009 - link

    Well, take a look at the Pentium version, and you'll see the what I was saying about the cache. We both can agree it's the same core, but one has a larger cache.

    The Pentium is 82 mm2, with 228 million transistors, with a 2.064 megabytes of cache (L1 + L2). But, since 1 megabyte is disabled, it's really 3.064, like the other Wolfdale's have. The 6 MB version of the Core 2 is 107 mm2 with 410 million transistors.

    So, you can see that adding 3 MB of cache increased the transistor count by 182 million, but the size by only 25 mm2. Or, in other words, it increased transistors by about 80%, but size by about 31%. So, cache does increase transistor count disproportionately to die size.

    Oh, and yes, the IMC is quite large. You can view some of the pictures of the CPU die to see it, but it's far from insignificant in size.
    Reply

Log in

Don't have an account? Sign up now