Derek Gets Technical Again: Of Warps, Wavefronts and SPMD

From our GT200 review, we learned a little about thread organization and scheduling on NVIDIA hardware. In speaking with AMD we discovered that sometimes it just makes sense to approach the solution to a problem in similar ways. Like NVIDIA, AMD schedules threads in groups (called wavefronts by AMD) that execute over 4 cycles. As RV770 has 16 5-wide SPs (each of which process one "stream" or thread or whatever you want to call it) at a time (and because they said so), we can conclude that AMD organizes 64 threads into one wavefront which all must execute in parallel. After GT200, we did learn that NVIDIA further groups warps into thread blocks, and we just learned that their are two more levels of organization in AMD hardware.

Like NVIDIA, AMD maintains context per wavefront: register space, instruction stream, global constants, and local store space are shared between all threads running in a wavefront and data sharing and synchronization can be done within a thread block. The larger grouping of thread blocks enables global data sharing using the global data store, but we didn't actually get a name or specification for it. On RV770 one VLIW instruction (up to 5 operations) is broadcast to each of the SPs which runs on it's own unique set of data and subset of the register file.

To put it side by side with NVIDIA's architecture, we've put together a table with what we know about resources per SM / SIMD array.

NVIDIA/AMD Feature NVIDIA GT200 AMD RV770
Registers per SM/SIMD Core 16K x 32-bit 16K x 128-bit
Registers on Chip 491,520 (1.875MB) 163,840 (2.5MB)
Local Store 16KB 16KB
Global Store None 16KB
Max Threads on Chip 30,720 16,384
Max Threads per SM/SIMD Core 1,024 > 1,000
Max Threads per Warp/Wavefront 960 256 (with 64 reserved)
Max Warps/Wavefronts on Chip 512 We Have No Idea
Max Thread Blocks per SM/SIMD Core 8 AMD Won't Tell Us
That's right, AMD has 2.5MB of register space

We love that we have all this data, and both NVIDIA's CUDA programming guide and the documentation that comes with AMD's CAL SDK offer some great low level info. But the problem is that hard core tuners of code really need more information to properly tune their applications. To some extent, graphics takes care of itself, as there are a lot of different things that need to happen in different ways. It's the GPGPU crowd, the pioneers of GPU computing, that will need much more low level data on how resource allocation impacts thread issue rates and how to properly fetch and prefetch data to make the best use of external and internal memory bandwidth.

But for now, these details are the ones we have, and we hope that programmers used to programming massively data parallel code will be able to get under the hood and do something with these architectures even before we have an industry standard way to take advantage of heterogeneous computing on the desktop.

Which brings us to an interesting point.

NVIDIA wanted us to push some ridiculous acronym for their SM's architecture: SIMT (single instruction multiple thread). First off, this is a confusing descriptor based on the normal understanding of instructions and threads. But more to the point, there already exists a programming model that nicely fits what NVIDIA and AMD are both actually doing in hardware: SPMD, or single program multiple data. This description is most often attached to distributed memory systems and large scale clusters, but it really is actually what is going on here.

Modern graphics architectures process multiple data sets (such as a vertex or a pixel and its attributes) with single programs (a shader program in graphics or a kernel if we're talking GPU computing) that are run both independently on multiple "cores" and in groups within a "core". Functionally we maintain one instruction stream (program) per context and apply it to multiple data sets, layered with the fact that multiple contexts can be running the same program independently. As with distributed SPMD systems, not all copies of the program are running at the same time: multiple warps or wavefronts may be at different stages of execution within the same program and support barrier synchronization.

For more information on the SPMD programming model, wikipedia has a good page on the subject even though it doesn't talk about how GPUs would fit into SPMD quite yet.

GPUs take advantage of a property of SPMD that distributed systems do not (explicitly anyway): fine grained resource sharing with SIMD processing where data comes from multiple threads. Threads running the same code can actually physically share the same instruction and data caches and can have high speed access to each others data through a local store. This is in contrast to larger systems where each system gets a copy of everything to handle in its own way with its own data at its own pace (and in which messaging and communication become more asynchronous, critical and complex).

AMD offers an advantage in the SPMD paradigm in that it maintains a global store (present since RV670) where all threads can share result data globally if they need to (this is something that NVIDIA does not support). This feature allows more flexibility in algorithm implementation and can offer performance benefits in some applications.

In short, the reality of GPGPU computing has been the implementation in hardware of the ideal machine to handle the SPMD programming model. Bits and pieces are borrowed from SIMD, SMT, TMT, and other micro-architectural features to build architectures that we submit should be classified as SPMD hardware in honor of the programming model they natively support. We've already got enough acronyms in the computing world, and it's high time we consolidate where it makes sense and stop making up new terms for the same things.

That Darn Compute:Texture Ratio A Quick Primer on ILP and ILP vs. TLP Extraction
Comments Locked

215 Comments

View All Comments

  • BusterGoode - Sunday, June 29, 2008 - link

    Thanks, great article by the way Anandtech is my first stop for reviews.
  • jay401 - Wednesday, June 25, 2008 - link

    Good but I just wish AMD would give it a full 512-bit memory bus bandwidth. Tired of 256-bit. It's so dated and it shows in the overall bandwidth compared to NVidia's cards with 512-bit bus widths. All that fancy GDDR4/5 and it doesn't actually shoot them way ahead of NVidia's cards in memory bandwidth because they halve the bus width by going with 256-bit instead of 512-bit. When they offer 512-bit the cards will REALLY shine.
  • Spoelie - Thursday, June 26, 2008 - link

    Except that when R600 had a 512bit bus, it didn't show any advantage over RV670 with a 256bit bus. And that was with GDDR3 vs GDDR3, not GDDR5 like in RV770 case.
  • JarredWalton - Thursday, June 26, 2008 - link

    R600 was 512-bit ring bus with 256-bit memory interface (four 64-bit interfaces). http://www.anandtech.com/showdoc.aspx?i=2552&p...">Read about it here for a refresh. Besides being more costly to implement, it used a lot of power and didn't actually end up providing provably better performance. I think it was an interesting approach that turned out to be less than perfect... just like NetBurst was an interesting design that turned out to have serious power limitations.
  • Spoelie - Thursday, June 26, 2008 - link

    Except that it was not, that was R520 ;) and R580 is the X19x0 series. That second one proved to be the superior solution over time.

    R600 is the x2900xt, and it had a 1024bit ring bus with 512bit memory interface.
  • DerekWilson - Sunday, June 29, 2008 - link

    yeah, r600 was 512-bit

    http://www.anandtech.com/showdoc.aspx?i=2988&p...">http://www.anandtech.com/showdoc.aspx?i=2988&p...

    looking at external bus width is an interesting challenge ... and gddr5 makes things a little more crazy in that clock speed and bus width can be so low with such high data rates ...

    but the 4870 does have 16 memory modules on it ... so that's a bit of a barrier to higher bit width busses ...
  • JarredWalton - Wednesday, June 25, 2008 - link

    I'd argue that the 512-bit memory interface on NVIDIA's cards is at least partly to blame for their high pricing. All things being equal, a 512-bit interface costs a lot more to implement than a 256-bit interface. GDDR5 at 900MHz is effectively the same as GDDR3 at 1800MHz... except no one is able to make 1800MHz GDDR3. Latencies might favor one or the other solution, but latencies are usually covered by caching and other design decisions in the GPU world.
  • geok1ng - Wednesday, June 25, 2008 - link

    The tests showed what i feared: my 8800GT is getting old to pump my Apple at 2560x1600 even without AA! But the tests also showed that the 512MB of DDR5 on the 4870 justifies the higher price tag over the 4850, something that the 3870/3850 pair failed to demonstrate. It remains the question: will 1GB of DDR5 detrone NVIDIA and rule the 30 inches realm of single GPU solutions?
  • IKeelU - Wednesday, June 25, 2008 - link

    "It is as if AMD and NVIDIA just started pulling out hardware and throwing it at eachother"

    This makes me crack up...I just imagine two bruised and sweaty middle-aged CEO's flinging PCBs at each other, like children in a snowball fight.
  • Thorsson - Wednesday, June 25, 2008 - link

    The heat is worrying. I'd like to see how aftermarket coolers work with a 4870.

Log in

Don't have an account? Sign up now