MCH Read Delay Scaling and Default tRD Settings for Each Strap

Earlier, when we introduced the concept of the memory strap, we also included a table of common memory configurations that contained a column of "Default tRD" values. It's important to realize that these values are associated with the strap and have nothing to do with the actual FSB setting. This is because default operation assumes no overclocking, therefore if the 266 strap is being used then the processor obviously must be running at its rated FSB speed of 266MHz. Adding to this the element of a fully adjustable FSB introduces a new level of complexity that the system was never designed to handle.

This allows us to explain why making use of lower strap settings at one time provided for higher levels of performance - we've created the table below for just this purpose. (We say "at one time" because, as we will soon learn, most motherboards now implement strap changes in a manner much different than was previously done.) For example, selecting the 400 strap and setting a 1:1 memory divider at 400MHz FSB would result in DDR2-800 memory speed. By converting the FSB frequency into a cycle period (time for each clock tick) and then multiplying this value by the strap's default MCH Read Delay (tRD) we can effortlessly calculate the true latency (in nanoseconds) associated with this setting. As an example, dividing 1000 by the FSB (400MHz) gives us 2.5 (nanoseconds) - the co-efficient of 1000 used in this conversion formula was purposefully selected in order to give our result in the proper units. So, 12 times 2.5ns equals 30ns, which we then pair with our derived DDR speed rating of DDR2-800.



We will go into more detail about what this value means, but for the time being simply recognize that we want to minimize this number. We can see that the optimal configuration is one in which we would make use of a lower strap along with a higher FSB. While simultaneously applying these two considerations is obviously paramount in order to take advantage of this affect, the practical application of this approach is bounded in a number of ways. For instance, the near absolute minimum limit on any true read delay latency (tRD) might eventually come into play. We also need to be mindful of which memory dividers are available for the strap of choice, as these will ultimately dictate what final memory speeds are possible. Finally, we will soon learn that there are some strict rules that define whether or not a particular MCH Read Delay (tRD) is allowable, depending on the FSB, memory divider in use, and even the memory Column Address Strobe (CAS) setting.

Now that we have had a chance to apply the simple equation to convert a tRD value into a TRD latency, we are ready to examine a graphic that displays the full breadth of this concept. We have plotted the complete range of FSB speeds encompassed by currently defined straps versus the derived TRD values for each default tRD associated with each strap. That may sound more complicated that what it really is; basically, these lines represent how TRD scales across our FSB window of interest (266 to 400MHz FSB) for each tRD in the table above. We can see that by drawing a vertical line from each default FSB up to the line corresponding to that strap's default tRD, and then reading across always results in the same TRD - 30.0 ns. This is by design, and is precisely how each default tRD was determined for all of the straps we have examined. It may be helpful to think of tRD as another memory timing, except that it has nothing to do with memory and everything to do with the MCH. In this sense it responds to FSB scaling in the same way as other memory timings - CAS (tCL), RAS to CAS (tRCD), Row Precharge (tRP) - the true latency (TRD) always decreases in a manner inversely proportional to FSB, and at some point will reach a minimum where the next higher tRD must be used in order to continue scaling.



What happens if we can set the tRD independent of the strap in use? Of course, the strap selected would still dictate which memory dividers are available, but no longer are we forced to make this change solely for the purposes of modifying tRD. As it turns out, this is exactly how these settings work with most of today's enthusiast motherboards built for overclocking, and the ASUS Rampage Formula is no exception. The ability to set a tRD value, regardless of the strap (i.e. memory divider), allows for a whole new world of possibilities when tuning for enhanced performance.

This brings us to the focus of true improvements made to the X38 chipset, which can be experienced more easily with X48 now. Too many benchmark reviews have been guilty of inappropriately discounting the value of this new chipset by calling the X48 little more than a "speed binned" version of the X38 and then comparing their relative performance at stock speeds. This would be like calling the QX6850 (3.00GHz default clock) a speed binned version of the Q6600 (2.4GHz default clock), benching them head-to-head at an equivalent speed, and then concluding that the QX6850 provides no additional value. Overclocking headroom is exactly what differentiates Intel's current line of Core 2 Extreme CPUs from their mainstream offerings, and it's also what makes the X48 stand head and shoulders above the X38 now that the BIOS designs have matured. When all is said and done, this just makes us wonder who really understands how to overclock the MCH properly.

MCH overclocking takes many forms. One form is something you might already be familiar with, carried out by simply raising the FSB. The problem is that BIOS setup routines will usually provide relief to the MCH by automatically relaxing tRD as the FSB is pushed higher and higher. This effect can easily negate any gains that might otherwise be achieved. Taking control of tRD and manually steering it to a lower value will allow the user to retain the associated performance increase, and as such must also technically be considered overclocking. As with most if not all positive performance adjustments realized while overclocking, this modification comes at a cost - in particular, the need for increased vMCH.

That is not to say that a certain level of headroom does not already exist as an accessible performance boost - it does. While Intel is wise to provide generous levels of margin between pre-established default tRD values and those attainable without the need for any additional voltage, we would consider ourselves foolish if we did not take advantage of this relatively free performance improvement. For instance, looking at the plot of X48 MCH overclocking response curves below we can see that although a default tRD value of 12 is normally used at greater than 400MHz FSB (using the 400 strap), at about 425MHz FSB we should have little to no trouble setting a tRD of 6, even using stock vMCH. The end result this tRD reduction of 6 clocks brings is a total memory read latency decrease of approximately 14.1ns (the difference in TRD values at 425MHz FSB using a tRD of 12 and 6).



With that, we can finally see how this consideration comes full circle - the lower the TRD, the higher the memory read performance and vice versa. This change in TRD also drives vMCH, with lower values requiring substantially more voltage than the more "relaxed" (higher) values. We were able to push our ASUS Rampage Formula to a very impressive 450MHz FSB using a tRD of 5, which correlates to a TRD of about 11.1 ns. Because this required about 1.60V vMCH, for all intents and purposes we would consider this to be the practical limit of scaling, at least with conventional cooling. Above this voltage, we find that the X48 quickly turns into a little furnace during periods of prolonged load. Our recommendation is the liberal use of extra cooling capacity if you feel the need to push any further.

The Clock Crossing Procedure and MCH Read Delay (tRD) Real-World Results: What Does a Lower tRD Really Provide?
Comments Locked

73 Comments

View All Comments

  • dallas - Monday, March 24, 2008 - link

    I was wondering how this chipset and Windows Vista 64-bit handles IRQ ? I have a Creative X-fi and it has had a lot of problems with PCI-latency and shared IRQ. According to the manual PCI slot 2 is the only one of the two that does not share IRQ with the graphic cards. Do you guys have any experience of this ?

    Second question is related also to IRQ. I have a Razer Deathadder mouse which I use at 1000Hz polling rate and it seems to cause quite a bit CPU-usage (average of 10% with AMD64 3500+ when moving mouse at desktop without overlapping anything). I guess it would be ideal to connect it to a USB-port not sharing any IRQ. Rampage Formula has 12 USB-ports total, but reading the manual it says there is USB controllers 1 to 6 and USB 2.0 controllers 1 and 2. How do I relate these figures to the actual layout of the board ? USB controllers 2 and 5 are the only ones not sharing IRQ.

    http://dlsvr01.asus.com/pub/ASUS/mb/socket775/Ramp...">http://dlsvr01.asus.com/pub/ASUS/mb/soc...rmula/Ra...

    Thanks
  • nitemareglitch - Friday, March 7, 2008 - link

    My older DFI nForce 4 board had fully adjustable tRd among other things. Asus taking a play from their book?
  • rge - Monday, February 18, 2008 - link

    Granted I am using gigabyte p35 dq6 board, but I thought loadline simply was a sensor adjustment? Anyone know what is meant by induced power instabilities? measured by?

    I thought (and may well be wrong) that with loadline disabled, if I choose 1.25v bios as vcore, idle would be 1.23 volts (Voffset), load (dual core) would be 1.22v (Vdroop), when load stops, overshoot to 1.25v before decreasing back to 1.23 idle. Thus when you are choosing 1.25 volts in bios, you are choosing max volts ie, overshoot max, and not idle volts.

    I thought loadline was simply a ~.02v sensor calibration, so when enabled, and you choose 1.25 volts in bios, you are then choosing the idle volts (instead of overshoot max) and thus it idles at 1.25V. During load you still see vdroop to 1.24v, and overshoots to 1.27v.

    In other words no difference between loadline enabled 1.23v and loadline disabled 1.25v, just personal preference of making bios vcore set idle volts or max overshoot volts.

    If I am wrong can someone please inform me what loadline is, and what is meant by power instabilities...mean ?greater fluctuations in volts or what?
  • Nickel020 - Saturday, February 16, 2008 - link

    Firstly, great article! Got me a long way in increasing my memory speed and understanding the underlying factors.

    What I don't understand though is why the X48 is better than the X38. I already have the option to change tRD on my Gigabyte P35 DQ6, and I'm getting much better memory perfromance after manually setting it to 6.
    As I see it, the option to adjust tRD is only a BIOS issue and it can be done on P35 and X38, so how does this make the X48 a better chipset?
  • kjboughton - Sunday, February 17, 2008 - link

    The difference comes in the voltages required to run equivalent speeds/tRD settings. In fact, the X48 board are capable of running stable at much higher speeds, using tigher MCH Read Delay (tRD) values at lower voltages. More to come soon...
  • Holmer - Monday, February 18, 2008 - link

    Thanks for an excellent article.
    I would just love to know how well the Rampage formula handles overclocking with 4x1 GB RAM? How large is the performance hit as compared to 2x2 GB and can it handle 1200 MHz (with two 2x1 GB kits rated at this speed).
    Roughly when can we expect the loon awaited X48 roundup?
    Thanks a lot on beforehand.
  • Holmer - Friday, February 22, 2008 - link

    Another question: Is is possible to manually set tRFC > 42 in BIOS? If yes what is the maximun value of tRFC?
    I would be very grateful for an answer.
  • The Ghost - Saturday, February 2, 2008 - link

    With 400Mhz, tRD of 4, CL of 4 and 3:2 ratio I get this:
    1,334 > 1,333

    Is that enough to post or is 0,001 to little to "allowed" ?
  • Vikendios - Wednesday, January 30, 2008 - link

    It's all very fine, but as long as ATI/AMD GPU's are outclassed by Nvidia's, the gamer scene which drives the $300+ motherboard business has little interest in non-Nvidia-SLI solutions. It's bizarre that Intel focuses on chipsets that can apparently only handle well (correct me if I'm wrong) their arch-competitors AMD's GPU's in (Crossfire) arrays.

    Intel should hurry to develop competitors to 790i that are really neutral as to which twinned or tripled video cards are used.
  • Gary Key - Wednesday, January 30, 2008 - link

    The last time I tested it, X38 ran SLI faster than 680i. The problem is not the chipset, it is simply a decision by NVIDIA (and/or Intel) not to "officially" license SLI on the Intel chipset platforms, except for the upcoming Skulltrail board.

    This whole SLI/Crossfire debate has gone on long enough, the technologies accomplish the same purpose (are practically identical from a technological viewpoint) and setting up a board/BIOS to run either is actually very easy. CF runs just fine on the NV680i/780i and SLI runs just fine on the 975X/X38/X48 if driver support is present and the proper switches are enabled in the BIOS. Personally, I would like to have the ability to run (unhindered) AMD or NVIDIA GPUs in multi-GPU configurations on either chipset platform. I just wish they would let the market determine the best multi-GPU solution, but that is pie in the sky thinking. ;)

Log in

Don't have an account? Sign up now