Fundamental Windows 10 Issues: Priority and Focus

In a normal scenario the expected running of software on a computer is that all cores are equal, such that any thread can go anywhere and expect the same performance. As we’ve already discussed, the new Alder Lake design of performance cores and efficiency cores means that not everything is equal, and the system has to know where to put what workload for maximum effect.

To this end, Intel created Thread Director, which acts as the ultimate information depot for what is happening on the CPU. It knows what threads are where, what each of the cores can do, how compute heavy or memory heavy each thread is, and where all the thermal hot spots and voltages mix in. With that information, it sends data to the operating system about how the threads are operating, with suggestions of actions to perform, or which threads can be promoted/demoted in the event of something new coming in. The operating system scheduler is then the ring master, combining the Thread Director information with the information it has about the user – what software is in the foreground, what threads are tagged as low priority, and then it’s the operating system that actually orchestrates the whole process.

Intel has said that Windows 11 does all of this. The only thing Windows 10 doesn’t have is insight into the efficiency of the cores on the CPU. It assumes the efficiency is equal, but the performance differs – so instead of ‘performance vs efficiency’ cores, Windows 10 sees it more as ‘high performance vs low performance’. Intel says the net result of this will be seen only in run-to-run variation: there’s more of a chance of a thread spending some time on the low performance cores before being moved to high performance, and so anyone benchmarking multiple runs will see more variation on Windows 10 than Windows 11. But ultimately, the peak performance should be identical.

However, there are a couple of flaws.

At Intel’s Innovation event last week, we learned that the operating system will de-emphasise any workload that is not in user focus. For an office workload, or a mobile workload, this makes sense – if you’re in Excel, for example, you want Excel to be on the performance cores and those 60 chrome tabs you have open are all considered background tasks for the efficiency cores. The same with email, Netflix, or video games – what you are using there and then matters most, and everything else doesn’t really need the CPU.

However, this breaks down when it comes to more professional workflows. Intel gave an example of a content creator, exporting a video, and while that was processing going to edit some images. This puts the video export on the efficiency cores, while the image editor gets the performance cores. In my experience, the limiting factor in that scenario is the video export, not the image editor – what should take a unit of time on the P-cores now suddenly takes 2-3x on the E-cores while I’m doing something else. This extends to anyone who multi-tasks during a heavy workload, such as programmers waiting for the latest compile. Under this philosophy, the user would have to keep the important window in focus at all times. Beyond this, any software that spawns heavy compute threads in the background, without the potential for focus, would also be placed on the E-cores.

Personally, I think this is a crazy way to do things, especially on a desktop. Intel tells me there are three ways to stop this behaviour:

  1. Running dual monitors stops it
  2. Changing Windows Power Plan from Balanced to High Performance stops it
  3. There’s an option in the BIOS that, when enabled, means the Scroll Lock can be used to disable/park the E-cores, meaning nothing will be scheduled on them when the Scroll Lock is active.

(For those that are interested in Alder Lake confusing some DRM packages like Denuvo, #3 can also be used in that instance to play older games.)

For users that only have one window open at a time, or aren’t relying on any serious all-core time-critical workload, it won’t really affect them. But for anyone else, it’s a bit of a problem. But the problems don’t stop there, at least for Windows 10.

Knowing my luck by the time this review goes out it might be fixed, but:

Windows 10 also uses the threads in-OS priority as a guide for core scheduling. For any users that have played around with the task manager, there is an option to give a program a priority: Realtime, High, Above Normal, Normal, Below Normal, or Idle. The default is Normal. Behind the scenes this is actually a number from 0 to 31, where Normal is 8.

Some software will naturally give itself a lower priority, usually a 7 (below normal), as an indication to the operating system of either ‘I’m not important’ or ‘I’m a heavy workload and I want the user to still have a responsive system’. This second reason is an issue on Windows 10, as with Alder Lake it will schedule the workload on the E-cores. So even if it is a heavy workload, moving to the E-cores will slow it down, compared to simply being across all cores but at a lower priority. This is regardless of whether the program is in focus or not.

Of the normal benchmarks we run, this issue flared up mainly with the rendering tasks like CineBench, Corona, POV-Ray, but also happened with yCruncher and Keyshot (a visualization tool). In speaking to others, it appears that sometimes Chrome has a similar issue. The only way to fix these programs was to go into task manager and either (a) change the thread priority to Normal or higher, or (b) change the thread affinity to only P-cores. Software such as Project Lasso can be used to make sure that every time these programs are loaded, the priority is bumped up to normal.

Intel Disabled AVX-512, but Not Really Power: P-Core vs E-Core, Win10 vs Win11
Comments Locked

474 Comments

View All Comments

  • adamxpeter - Friday, November 5, 2021 - link

    Very poetic post.
  • bananaforscale - Friday, November 5, 2021 - link

    Seems we're actually getting a Zen 3 refresh early next year. Alder Lake's lead also decreases with DDR4, gaming above 1080p (so basically anyone who would buy a 12900K for a gaming rig), it uses more power and with DDR5 you pay extra for memory.

    Yeah, Alder Lake has some advantages. Not sure I'd call it a better overall package at the moment.
  • madseven7 - Saturday, November 6, 2021 - link

    Intel is back at the cost of power. AMD at that power will destroy Intel. Intel basically said screw TDP.
  • Qasar - Saturday, November 6, 2021 - link

    intel has been saying that for 2-3 years now, its the only way their chips can be competitive with zen 2 and 3
  • Maverick009 - Sunday, November 7, 2021 - link

    They really haven't screwed up as you would like to think. I do believe AMD was thrown off some by the unexpected performance in Hybrid design. They still do trade blows between some games, multi-threaded software, and on applications that are just not optimized for Alder Lake.

    What I have noticed though in the days since Alder Lake's NDA went up and reviews came out, is leaks to AMD's next gen Zen CPUs have begun to trinkle out a little more than usual. Yes we have Zen 4 on the way, which will pave the way for DDR5 and PCIe Gen5 along with an uplift in IPC. However the real secret sauce may be in Zen 4D as the platform to build a heavily multi-threaded core package along with SMT enabled, and then Zen 5. The big picture, is AMD's version of a Hybrid CPU may include a combination of Zen 4D big cores and Zen 5 Bigger cores. The Zen 4D are said to possibly carry as many as 16 cores per chiplet, too, so it would speak to a possible heavily multi-threaded efficient CPU, while sacrificing a little bit of single threaded performance to achieve it. The timeframe would also put the new Hybrid CPU on a collision course to battle Raptor Lake.

    For once the CPU market has gotten interesting again, and the consumer ultimately wins here.
  • NikosD - Monday, November 8, 2021 - link

    @reviewers

    Since AVX-512 is working on ADL, it would be useful to test the AVX-512 vs AVX2 power consumption of ADL by running POVRAY using P-cores only and compare that maximum AVX2 power consumption to AVX-512 max power consumption using 3DPM.

    Because max 272W power consumption of POVRAY as reported, includes 48W from E-cores too.
  • mode_13h - Tuesday, November 9, 2021 - link

    > it would be useful to test the AVX-512 vs AVX2 power consumption of ADL by running POVRAY

    I'm not sure of POV-Ray is the best way to stress AVX-512.
  • NikosD - Wednesday, November 10, 2021 - link

    They have already tested max power consumption of AVX-512 using 3DPM.

    I just asked to test POVRAY using P-cores only, for max power consumption of AVX2 in order to compare with 3DPM.
  • usernametaken76 - Monday, November 8, 2021 - link

    lol
  • xhris4747 - Tuesday, November 9, 2021 - link

    They did not take the performance crown gaming is almost tied overall mt is a mixed bag hopefully they use pbo which gives about 27k-30k on c23

Log in

Don't have an account? Sign up now