Last week, Apple had unveiled their new generation MacBook Pro laptop series, a new range of flagship devices that bring with them significant updates to the company’s professional and power-user oriented user-base. The new devices particularly differentiate themselves in that they’re now powered by two new additional entries in Apple’s own silicon line-up, the M1 Pro and the M1 Max. We’ve covered the initial reveal in last week’s overview article of the two new chips, and today we’re getting the first glimpses of the performance we’re expected to see off the new silicon.

The M1 Pro: 10-core CPU, 16-core GPU, 33.7bn Transistors

Starting off with the M1 Pro, the smaller sibling of the two, the design appears to be a new implementation of the first generation M1 chip, but this time designed from the ground up to scale up larger and to more performance. The M1 Pro in our view is the more interesting of the two designs, as it offers mostly everything that power users will deem generationally important in terms of upgrades.

At the heart of the SoC we find a new 10-core CPU setup, in a 8+2 configuration, with there being 8 performance Firestorm cores and 2 efficiency Icestorm cores. We had indicated in our initial coverage that it appears that Apple’s new M1 Pro and Max chips is using a similar, if not the same generation CPU IP as on the M1, rather than updating things to the newer generation cores that are being used in the A15. We seemingly can confirm this, as we’re seeing no apparent changes in the cores compared to what we’ve discovered on the M1 chips.

The CPU cores clock up to 3228MHz peak, however vary in frequency depending on how many cores are active within a cluster, clocking down to 3132 at 2, and 3036 MHz at 3 and 4 cores active. I say “per cluster”, because the 8 performance cores in the M1 Pro and M1 Max are indeed consisting of two 4-core clusters, both with their own 12MB L2 caches, and each being able to clock their CPUs independently from each other, so it’s actually possible to have four active cores in one cluster at 3036MHz and one active core in the other cluster running at 3.23GHz.

The two E-cores in the system clock at up to 2064MHz, and as opposed to the M1, there’s only two of them this time around, however, Apple still gives them their full 4MB of L2 cache, same as on the M1 and A-derivative chips.

One large feature of both chips is their much-increased memory bandwidth and interfaces – the M1 Pro features 256-bit LPDDR5 memory at 6400MT/s speeds, corresponding to 204GB/s bandwidth. This is significantly higher than the M1 at 68GB/s, and also generally higher than competitor laptop platforms which still rely on 128-bit interfaces.

We’ve been able to identify the “SLC”, or system level cache as we call it, to be falling in at 24MB for the M1 Pro, and 48MB on the M1 Max, a bit smaller than what we initially speculated, but makes sense given the SRAM die area – representing a 50% increase over the per-block SLC on the M1.

 

The M1 Max: A 32-Core GPU Monstrosity at 57bn Transistors

Above the M1 Pro we have Apple’s second new M1 chip, the M1 Max. The M1 Max is essentially identical to the M1 Pro in terms of architecture and in many of its functional blocks – but what sets the Max apart is that Apple has equipped it with much larger GPU and media encode/decode complexes. Overall, Apple has doubled the number of GPU cores and media blocks, giving the M1 Max virtually twice the GPU and media performance.

The GPU and memory interfaces of the chip are by far the most differentiated aspects of the chip, instead of a 16-core GPU, Apple doubles things up to a 32-core unit. On the M1 Max which we tested for today, the GPU is running at up to 1296MHz  - quite fast for what we consider mobile IP, but still significantly slower than what we’ve seen from the conventional PC and console space where GPUs now can run up to around 2.5GHz.

Apple also doubles up on the memory interfaces, using a whopping 512-bit wide LPDDR5 memory subsystem – unheard of in an SoC and even rare amongst historical discrete GPU designs. This gives the chip a massive 408GB/s of bandwidth – how this bandwidth is accessible to the various IP blocks on the chip is one of the things we’ll be investigating today.

The memory controller caches are at 48MB in this chip, allowing for theoretically amplified memory bandwidth for various SoC blocks as well as reducing off-chip DRAM traffic, thus also reducing power and energy usage of the chip.

Apple’s die shot of the M1 Max was a bit weird initially in that we weren’t sure if it actually represents physical reality – especially on the bottom part of the chip we had noted that there appears to be a doubled up NPU – something Apple doesn’t officially disclose. A doubled up media engine makes sense as that’s part of the features of the chip, however until we can get a third-party die shot to confirm that this is indeed how the chip looks like, we’ll refrain from speculating further in this regard.

Huge Memory Bandwidth, but not for every Block
Comments Locked

493 Comments

View All Comments

  • Ppietra - Tuesday, October 26, 2021 - link

    anyone can compile SPEC and see the source code
  • Ppietra - Monday, October 25, 2021 - link

    There aren’t that many games that are actually optimized for Apple’s hardware so you cannot actually extrapolate to other case scenarios, though we shouldn’t expect to be the best anyway. We should look for other kind of workloads to see out it behaves.
    SPEC uses a lot of different real world tasks.
  • FurryFireball - Wednesday, October 27, 2021 - link

    World of Warcraft is optimized for the M1
  • Ppietra - Wednesday, October 27, 2021 - link

    true, but it isn’t one of the games that were tested.
    What I meant is that people seem to be drawing conclusions about hardware based on games that have almost no optimisation.
  • The Hardcard - Monday, October 25, 2021 - link

    Please provide 1 example of the M1 falling behind on native code. As far as games, we’ll see if maybe one developer will dip a toe in with a native game. I wouldn’t buy one of these now if gaming was a prority.

    But note, these SPEC scores are unoptimized and independently compiled, so there are no benchmark tricks here. Imagine what the scores would be if time was taken to optimize to the architecture’s strengths.
  • name99 - Monday, October 25, 2021 - link

    Oh the internet...
    - Idiot fringe A complaining that "SPEC results don't count because Apple didn't submit properly tuned and optimized results".
    - Meanwhile, simultaneously, Idiot fringe B complaining that "Apple cheats on benchmarks because they once, 20 years ago, in fact tried to create tuned and optimized SPEC results".
  • sean8102 - Tuesday, October 26, 2021 - link

    From what I can find Baldur's Gate 3 and WoW are the only 2 demanding games that are ARM native on macOS.
    https://www.applegamingwiki.com/wiki/M1_native_com...
  • michael2k - Monday, October 25, 2021 - link

    From the article, yes, the benchmark does show the M1M beating the 3080 and Intel/AMD:
    On the GPU side, the GE76 Raider comes with a GTX 3080 mobile. On Aztec High, this uses a total of 200W power for 266fps, while the M1 Max beats it at 307fps with just 70W wall active power. The package powers for the MSI system are reported at 35+144W.

    In the SPECfp suite, the M1 Max is in its own category of silicon with no comparison in the market. It completely demolishes any laptop contender, showcasing 2.2x performance of the second-best laptop chip. The M1 Max even manages to outperform the 16-core 5950X – a chip whose package power is at 142W, with rest of system even quite above that. It’s an absolutely absurd comparison and a situation we haven’t seen the likes of.

    However, your assertion regarding applications seems completely opposite what the review found:
    With that said, the GPU performance of the new chips relative to the best in the world of Windows is all over the place. GFXBench looks really good, as do the MacBooks’ performance productivity workloads. For the true professionals out there – the people using cameras that cost as much as a MacBook Pro and software packages that are only slightly cheaper – the M1 Pro and M1 Max should prove very welcome. There is a massive amount of pixel pushing power available in these SoCs, so long as you have the workload required to put it to good use.
  • taligentia - Monday, October 25, 2021 - link

    Did you even read the article ?

    The "real world" 3080 scenarios were done using Rosetta emulated apps.

    When you look at GPU intensive apps e.g. Davinci Resolve it is seeing staggering performance.
  • vlad42 - Monday, October 25, 2021 - link

    Did you read the article? Andrei made sure the UHD benchmarks were GPU bound, not CPU bound (which would be the case if it were a Rosetta issue).

Log in

Don't have an account? Sign up now