Conclusion

Threadripper Pro is designed to fill a niche in the workstation market. The workstation market has always been a little bit odd in that it wants the power and frequency of a high-end desktop, but the core count, memory support, and IO capabilities of servers. AMD blurred the lines by moving its mainstream desktop platform to 16 cores, but failed to meet memory and IO requirements – Threadripper got part of the way there, going up to 32 cores and then 64 cores with more memory and IO, but it was still limiting in support for things like ECC. That’s where Threadripper Pro comes in.

The whole point of Threadripper Pro is to appeal to those that need the features of EPYC but none of the downsides of potentially lower performance or extended service contracts. EPYC, by and large, has been sold only at the system level, whereas Threadripper Pro can be purchased at retail, and the goal of the product is to be ISV verified for standard workstation applications. In a world without Threadripper Pro, users who want the platform can either get a Threadripper and lament the reduced memory performance and IO, or they could get an EPYC and lament the reduced core performance. Speaking with OEMs, there are some verticals (like visual effects) that requested versions of Threadripper with Pro features, such as remote management, or remote access when WFH with a proper admin security stack. Even though TR Pro fills a niche, it’s still a niche.

In our testing today, we benchmarked all three retail versions of Threadripper Pro in a retail motherboard, and compared them to the Threadripper 3000 series.

AMD Comparison
AnandTech Cores Base
Freq
Turbo
Freq
Chips L3
Cache
TDP Price
SEP
AMD EPYC (Zen 3, 128 PCIe 4.0, 8 channel DDR4 ECC)
7763 (2P) 64 / 128 2450 3500 8 + 1 256 MB 280 W $7890
7713P 64 / 128 2000 3675 8 + 1 256 MB 225 W $5010
7543P 32 / 64 2800 3700 8 + 1 256 MB 225 W $2730
7443P 24 / 48 2850 4000 4 + 1 128 MB 200 W $1337
7313P 16 / 32 3000 3700 4 + 1 128 MB 155 W $913
AMD Threadripper Pro (Zen 2, 128 PCIe 4.0, 8 channel DDR4-ECC)
3995WX 64 / 128 2700 4200 8 + 1 256 MB 280 W $5490
3975WX 32 / 64 3500 4200 4 + 1 128 MB 280 W $2750
3955WX 16 / 32 3900 4300 2 + 1 64 MB 280 W $1150
3945WX 12 / 24 4000 4300 2 + 1 64 MB 280 W OEM
AMD Threadripper (Zen 2, 64 PCIe 4.0, 4 channel DDR)
3990X 64 / 128 2900 4300 8 + 1 256 MB 280 W $3990
3970X 32 / 64 3700 4500 4 + 1 128 MB 280 W $1999
3960X 24 / 48 3800 4500 4 + 1 128 MB 280 W $1399
AMD Ryzen (Zen 3, 20 PCIe 4.0, 2 channel DDR)
R9 5950X 16 / 32 3400 4900 2 + 1 64 MB 105 W $799

Performance between Threadripper Pro and Threadripper came in three stages. Either (a) the results between similar processors was practically identical, (b) Threadripper beat TR Pro by a small margin due to slightly higher frequencies, or (c) TR Pro thrashed Threadripper due to memory bandwidth availability. That last point, (c), only really kicks in for the 32c and 64c processors it should be noted. Our 16c TR Pro had the same memory bandwidth results as TR, most likely due to only having two chiplets in its design.

In the end, that’s what TR Pro is there for – features that Threadripper doesn’t have. If you absolutely need up to 2 TB of eight-channel memory over 256 GB, you need TR Pro. If you absolutely need memory with ECC, then TR Pro has validated support. If you absolutely need 128 lanes of PCIe 4.0 rather than 64, then TR Pro has it. If you absolutely need Pro features, then TR Pro has it.

The price you pay for these Threadripper Pro features is an extra 37.5% over Threadripper. The corollary is that TR Pro is also more expensive than 1P EPYC processors because it has the full 280 W frequency profile, while EPYC 1P is only at 225W/240W. EPYC does have 280 W processors for dual-socket platforms, such as the 7763, but they cost more than TR Pro.

The benefit to EPYC right now is that EPYC Milan uses Zen 3 cores, while Threadripper Pro is using Zen 2 cores. We are patiently waiting for AMD to launch Threadripper versions with Zen 3 – we hoped it would have been at Computex in June, but now we’re not sure exactly when. Even if AMD does launch Threadripper with Zen 3 this year, Threadripper Pro variants might take longer to arrive.

CPU Tests: Microbenchmarks
Comments Locked

98 Comments

View All Comments

  • Spunjji - Friday, July 16, 2021 - link

    Having seen how modern processors behave with insufficient cooling, Threska's right that it won't get "fried", but you're correct to infer that it would result in unpredictably sub-optimal performance.

    Anecdotally, I had a friend with a Sandy Bridge system with a cooling issue that he only noticed when he bought a new GPU and ran 3DMark and got unexpectedly low results. The "cooling issue" was that the stock heatsink wasn't even making contact with the CPU heat-spreader; he'd been gaming with the system for 3 years by that point. 😬
  • serpretetsky - Friday, July 16, 2021 - link

    I had to do some thermal shutdown testing on some consumer intel cpu. I forgot which one. Maybe i5/i7 8000 series?

    With server CPUs this was usually pretty easy, remove fan, and wait for shutdown. With the consumer CPU it kept running. So i completely removed the heatsink, the thing simply downclocked to 800 MHz, and continued running happily with no heatsink. Booted to linux, ran everything great, and no heatsink (actually once it booted to linux I think it even started clocking back up once in a while). I had get a hot-air soldering gun to heat it up till shutdown.
  • mode_13h - Saturday, July 17, 2021 - link

    5-10 years ago, there was a heatsink gasket where you have to get near 100 degrees C to melt the material so it fuses with the heatsink and CPU. I forget the name, but I'm wondering if it's even possible to do that any more.
  • skaurus - Wednesday, July 14, 2021 - link

    That's great analysis.
  • Threska - Wednesday, July 14, 2021 - link

    It would be nice to see how these MBs do with VFIO since that has considerations most users don't.
  • mode_13h - Wednesday, July 14, 2021 - link

    Ian, is the source code for your 3DPM benchmark published anywhere? If not, it would be nice if we could see it and compare the AVX2 path with the AVX-512 one. Also, maybe someone could add support for ARM NEON or SVE.
  • techguymaxc - Wednesday, July 14, 2021 - link

    I'm slightly confused by the concluding remarks.

    "Performance between Threadripper Pro and Threadripper came in three stages. Either (a) the results between similar processors was practically identical, (b) Threadripper beat TR Pro by a small margin due to slightly higher frequencies, or (c) TR Pro thrashed Threadripper due to memory bandwidth availability. That last point, (c), only really kicks in for the 32c and 64c processors it should be noted. Our 16c TR Pro had the same memory bandwidth results as TR, most likely due to only having two chiplets in its design."

    A and B are observable, but C only proves true in synthetic benchmarks (and Pi calculation). Is there a real-world use-case for the additional memory bandwidth, outside of calculating Pi?
  • Blastdoor - Wednesday, July 14, 2021 - link

    The advantage shows up with multi-threaded SPEC. SPEC is essentially a composite of a suite of real-world tasks. I guess you could call it 'synthetic' due to it being a composite, but the individual tasks don't strike me as 'synthetic.' For example, here's a description of namd: https://www.spec.org/cpu2017/Docs/benchmarks/508.n...
  • techguymaxc - Wednesday, July 14, 2021 - link

    Thanks for that info. It would be nice to see the breakdown of individual test results from the SPEC suite.
  • arashi - Saturday, July 17, 2021 - link

    Bench

Log in

Don't have an account? Sign up now