AnandTech Storage Bench - The Destroyer

Our AnandTech Storage Bench tests are traces (recordings) of real-world IO patterns that are replayed onto the drives under test. The Destroyer is the longest and most difficult phase of our consumer SSD test suite. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

ATSB The Destroyer
Average Data Rate
Average Latency Average Read Latency Average Write Latency
99th Percentile Latency 99th Percentile Read Latency 99th Percentile Write Latency
Energy Usage

For SATA drives, the Samsung 870 EVOs turn in class-leading scores on almost all of the performance metrics. But these improvements are all marginal at best; the SATA interface bottleneck almost completely levels the playing field. The small improvements to read latency brought by the 870 EVO pale in comparison to what is achieved by even entry-level NVMe SSDs.

In stark contrast to the performance numbers, the 870 EVOs turn out to be the most power-hungry TLC drives in this bunch: they sacrifice some of the efficiency improvements the 860 EVO provided, even though drives like the SK hynix Gold S31 have been able to deliver significant improvement on this.

AnandTech Storage Bench - Heavy

The ATSB Heavy test is much shorter overall than The Destroyer, but is still fairly write-intensive. We run this test twice: first on a mostly-empty drive, and again on a completely full drive to show the worst-case performance.

ATSB Heavy
Average Data Rate
Average Latency Average Read Latency Average Write Latency
99th Percentile Latency 99th Percentile Read Latency 99th Percentile Write Latency
Energy Usage

The scores for the Heavy test paint much the same picture as for The Destroyer. The full-drive test runs additionally show that the worst-case performance of the mainstream SATA SSDs is still superior to many entry-level NVMe SSDs, even though the NVMe SSDs significantly outperform SATA for any more normal workload.

AnandTech Storage Bench - Light

The ATSB Light test represents ordinary everyday usage that doesn't put much strain on a SSD. Low queue depths, short bursts of IO and a short overall test duration mean this should be easy for any SSD. But running it a second time on a full drive shows how even storage-light workloads can be affected by SSD performance degradation.

ATSB Light
Average Data Rate
Average Latency Average Read Latency Average Write Latency
99th Percentile Latency 99th Percentile Read Latency 99th Percentile Write Latency
Energy Usage

On the Light test, the measurable but imperceptible performance advantages of the 870 EVOs over other SATA drives have basically disappeared. The read latency scores on the full-drive test runs may be a tiny bit better than the 860 EVO, but the only scores that have clearly shifted with this new generation are the energy consumption figures that have creeped up.

PCMark 10 Storage Benchmarks

The PCMark 10 Storage benchmarks are IO trace based tests similar to our own ATSB tests. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

PCMark 10 Storage Traces
Full System Drive Overall Score Average Bandwidth Average Latency
Quick System Drive Overall Score Average Bandwidth Average Latency
Data Drive Overall Score Average Bandwidth Average Latency

The Full System Drive test from the PCMark 10 Storage suite shows a much wider spread of performance scores among SATA drives than our ATSB traces, but also a much smaller advantage for the NVMe drives. Judging by this test, the 870 EVO offers a small but real improvement to performance compared to earlier SATA drives. The 4TB 870 QVO also scores quite well since it benefits from the same controller and has enough SLC cache to almost match the performance of the 4TB 870 EVO.

The subset of tests included in the Quick System Drive and Data Drive benchmarks show a more level playing field among SATA SSDs, and a greater advantage for NVMe drives. Since we run these tests before the Full System Drive test, each drive is closer to its fresh out-of-the-box state, which helps these tests get closer to showing the theoretical peak performance of a drive.

Introduction Synthetic Tests: Basic IO Patterns
Comments Locked

136 Comments

View All Comments

  • Spunjji - Friday, February 19, 2021 - link

    They won't be using SATA - and it will be spread across a whole lot more than one single drive.
  • dotjaz - Friday, February 19, 2021 - link

    But they are using SATA, nobody said it's single drive. It's how much storage you can fit into a 1U rack that matters, SATA is the only choice at the moment.
  • schujj07 - Wednesday, February 17, 2021 - link

    That is 100% false. NVMe is only surface area limited in the M.2 form factor. However, 99% of users do not need more than a 4TB NVMe SSD. Those that need larger drives can use M.2 > U.2 converters and get much larger SSDs.
  • Beaver M. - Wednesday, February 17, 2021 - link

    Yeah well, look into most SATA SSDs, their PCB isnt bigger than that of a M.2 SSD. Plus M.3 is coming = more space.
    Also theres U.2, which pretty much allows to use 2.5"-sized SSDs to be used (even on a M.2 connector).
    SATA is dead. And they know it, else they would have released a new standard very long ago.
  • nevcairiel - Wednesday, February 17, 2021 - link

    The solution to that is called U.2, NVMe with a cable.
  • flgt - Wednesday, February 17, 2021 - link

    ^^^
  • CaedenV - Wednesday, February 17, 2021 - link

    not really? You are typically limited to 8 or 16 chips with most SSDs, and you can hold that on a long double-sided m.2 just fine. If you are going with more than that then you are looking something extremely custom with a built in raid of some sort and that is going to be stupidly expensive and not for the consumer market.
    Just look at the pic of that 4TB board. Maybe 4 storage modules in it assuming there are 2 more on the other side? You can easily fit that on m.2 with room to spare.
  • flyingpants265 - Thursday, February 18, 2021 - link

    Storage in general is kinda dead. People buy 2tb drives very reluctantly if they want to add space.
  • DanNeely - Wednesday, February 17, 2021 - link

    SATA as an SSD interface is going nowhere. SATA as an HDD interface probably has 5-10 years left before the price crossover finally kills spinning rust off.

    If at some point in the future we do see a new SATA spec; it'll be because mass market spinning rust for NASes has gotten fast enough to bottleneck: In which case they'll backport the faster transport parts of the 2x as fast SAS standard to make SATA4.
  • wicketr - Wednesday, February 17, 2021 - link

    SATA at this point is need of major changes to keep up. They can't do a minor refresh at this point. With that in mind, I hope they change the cable so that it incorporates power into it as well. And they've got to shoot for something like 50Gb/s.

    At this point the latest USB spec is faster and provides power in a similar sized port. SATA should be able to beat that and it's a shame they haven't done so yet.

Log in

Don't have an account? Sign up now