Miscellaneous Performance Metrics

This section looks at some of the other commonly used benchmarks representative of the performance of specific real-world applications.

3D Rendering - CINEBENCH R15

We use CINEBENCH R15 for 3D rendering evaluation. The program provides three benchmark modes - OpenGL, single threaded and multi-threaded. Evaluation of different PC configurations in all three modes provided us the following results.

3D Rendering - CINEBENCH R15 - Single Thread

3D Rendering - CINEBENCH R15 - Multiple Threads

3D Rendering - CINEBENCH R15 - OpenGL

The results track what was observed in the media and entertainment category workloads in SPECworkstation 3.

x265 Benchmark

Next up, we have some video encoding benchmarks using x265 v2.8. The appropriate encoder executable is chosen based on the supported CPU features. In the first case, we encode 600 1080p YUV 4:2:0 frames into a 1080p30 HEVC Main-profile compatible video stream at 1 Mbps and record the average number of frames encoded per second.

Video Encoding - x265 - 1080p

Our second test case is 1200 4K YUV 4:2:0 frames getting encoded into a 4Kp60 HEVC Main10-profile video stream at 35 Mbps. The encoding FPS is recorded.

Video Encoding - x265 - 4K 10-bit

The Ghost Canyon NUC surprisingly performs better than systems equipped with CPUs sporting much higher TDPs.

7-Zip

7-Zip is a very effective and efficient compression program, often beating out OpenCL accelerated commercial programs in benchmarks even while using just the CPU power. 7-Zip has a benchmarking program that provides tons of details regarding the underlying CPU's efficiency. In this subsection, we are interested in the compression and decompression rates when utilizing all the available threads for the LZMA algorithm.

7-Zip LZMA Compression Benchmark

7-Zip LZMA Decompression Benchmark

Given the brief nature of the benchmark workload and the large number of available threads, it is no surprise that the Ghost Canyon NUC performs significantly better than the rest of the systems in this workload.

Cryptography Benchmarks

Cryptography has become an indispensable part of our interaction with computing systems. Almost all modern systems have some sort of hardware-acceleration for making cryptographic operations faster and more power efficient. In this sub-section, we look at two different real-world applications that may make use of this acceleration.

BitLocker is a Windows features that encrypts entire disk volumes. While drives that offer encryption capabilities are dealt with using that feature, most legacy systems and external drives have to use the host system implementation. Windows has no direct benchmark for BitLocker. However, we cooked up a BitLocker operation sequence to determine the adeptness of the system at handling BitLocker operations. We start off with a 2.5GB RAM drive in which a 2GB VHD (virtual hard disk) is created. This VHD is then mounted, and BitLocker is enabled on the volume. Once the BitLocker encryption process gets done, BitLocker is disabled. This triggers a decryption process. The times taken to complete the encryption and decryption are recorded. This process is repeated 25 times, and the average of the last 20 iterations is graphed below.

BitLocker Encryption Benchmark

BitLocker Decryption Benchmark

The BitLocker benchmark results are a bit surprising, particularly given the clear performance benefits of the Core i9-9980HK for cryptography applications in the other applications below.

Creation of secure archives is best done through the use of AES-256 as the encryption method while password protecting ZIP files. We re-use the benchmark mode of 7-Zip to determine the AES256-CBC encryption and decryption rates using pure software as well as AES-NI. Note that the 7-Zip benchmark uses a 48KB buffer for this purpose.

7-Zip AES256-CBC Encryption Benchmark

7-Zip AES256-CBC Decryption Benchmark

As expected, the 8C/16T configuration allows for fast encryption and decryption irrespective of the use of pure software or AES-NI instructions.

Yet another cryptography application is secure network communication. OpenSSL can take advantage of the acceleration provided by the host system to make operations faster. It also has a benchmark mode that can use varying buffer sizes. We recorded the processing rate for a 8KB buffer using the hardware-accelerated AES256-CBC-HAC-SHA1 feature.

OpenSSL Encryption Benchmark

OpenSSL Decryption Benchmark

These results are not surprising given the core count and operating frequency profile of the CPU in the Ghost Canyon NUC.

Agisoft Photoscan

Agisoft PhotoScan is a commercial program that converts 2D images into 3D point maps, meshes and textures. The program designers sent us a command line version in order to evaluate the efficiency of various systems that go under our review scanner. The command line version has two benchmark modes, one using the CPU and the other using both the CPU and GPU (via OpenCL). We present the results from our evaluation using the CPU mode only. The benchmark (v1.3) takes 84 photographs and does four stages of computation:

  • Stage 1: Align Photographs (capable of OpenCL acceleration)
  • Stage 2: Build Point Cloud (capable of OpenCL acceleration)
  • Stage 3: Build Mesh
  • Stage 4: Build Textures

We record the time taken for each stage. Since various elements of the software are single threaded, and others multithreaded, it is interesting to record the effects of CPU generations, speeds, number of cores, and DRAM parameters using this software.

Agisoft PhotoScan Benchmark - Stage 1

Agisoft PhotoScan Benchmark - Stage 2

Agisoft PhotoScan Benchmark - Stage 3

Agisoft PhotoScan Benchmark - Stage 4

The Ghost Canyon NUC is better than any of the other considered systems across all Photoscan stages.

Dolphin Emulator

Wrapping up our application benchmark numbers is the new Dolphin Emulator (v5) benchmark mode results. This is again a test of the CPU capabilities.

Dolphin Emulator Benchmark

In fact, the 249s taken by the Ghost Canyon NUC is the fastest amongst all SFF PCs we have evaluated with this benchmark.

SPECworkstation 3 Benchmark GPU Performance - Gaming Workloads
Comments Locked

109 Comments

View All Comments

  • PeachNCream - Thursday, April 16, 2020 - link

    NUCs have usually had a bit of a markup, but the price here is quite a bit higher than one would expect.
  • Deicidium369 - Thursday, April 16, 2020 - link

    I don't consider this a NUC, even though Intel puts it in that category - same thing with the ones with the skulls on them... the standard 4.5"x4.5" are the only ones I consider a NUC. Not really sure what the use case for this machine is.
  • PeachNCream - Friday, April 17, 2020 - link

    I agree with you all around. This is far different than the goals Intel originally set out to attain with the NUC form factor. It's Intel's objective and the company can do whatever it wants with the name, slapping it on a super computer for all I care, but that doesn't mean we are compelled to acknowledge it in the same way we would prior designs.

    The use case for it - a small form factor system used for gaming or GPU-based graphics work is certainly the intent. The problem is the pricing is way off as a lot of others have pointed out so the same goals could be accomplished in a similar, but slightly larger system for considerably lower cost.

    This seems like a Google-style thought experiment that some employee or team dreamed up. it got approved and is on sale. If subsequent generations are not sold in the future, we will know it didn't get close to projections or targets.
  • Deicidium369 - Friday, April 17, 2020 - link

    I have over 60 of these deployed in my business offices. I fabricate a 4.5" x ~11" piece of stainless steel - each end is drilled with the 100mm VESA bolt pattern. There are 2 90deg brakes (bends). 1 end in sandwiched between the monitor stand and monitor - other side the NUC mounting bracket is bolted. Short (12") DP and USB cables connect NUC to monitor - sourced a 100W power brick (Intel ships a variety of designs. some with convex sides) that is rectangular - with a standard 3pin AC jack and a barrel DC jack. Y splitter for the AC power - 1 to monitor other to power brick, and a 12" DC cable. So, coming up from the wallplate is 1 AC power cable & 1 CAT6e cable

    Makes an all in 1 - usecase doesn't require a desktop PC - even a normal SFF one. My employees can choose wired or wireless Microsoft keybd/mice. Keeps it super neat and super clean.

    When I started to migrate those people to work at home, made the move super easy - and didn't require one of my IT staff to handle the moves - the Palo Alto Networks VPN Endpoint was preconfigured, so just plug in the desktop and the IP Phone, and they were up an running again.

    I have 3 generations of units - about half are the oldest - the real NUC Tiger Lake will replace them all (not running into issues with compute power - but the iGPU struggles with dual 2560 or 4K monitors. 32GB + Samsung 512GB or 1TB NVME - no 2.5"
  • Icehawk - Saturday, April 18, 2020 - link

    Take a look at Dell’s 7070 Ultra. It’s basically a monitor stand, combine with a USB-C monitor and it’s very sleek. I work for a mid sized bank and will be deploying these in the future in our branches where before we used mini-PCs VESA mounted. Much cleaner and enterprise pricing is good.
  • Deicidium369 - Saturday, April 18, 2020 - link

    Thank's for the information - I actually bought one soon after they were released and evaluated as a replacement for the 35 or so NUCs I had installed at the time. There were manufacturing defects or issues, and had to send the eval unit back twice. By December, I had to purchase machines, as the business was expanding - and just couldn't, at that point, consider the Dell an option. The processing power at the time was pretty well evenly matched - the dual channel memory in the NUCs wasn't a huge advantage in testing. and the NVMe speed was comparable. So from a performance standpoint, they were pretty evenly matched - one of the main big features that was lacking in the Dell was the IGP - I had thought that instead of Comet Lake we would have gotten Ice Lake. Our workflow is pretty mundane - Word Excel Outlook and Chrome... So at this point the big reason for sticking with the NUCs is the "ecosystem" I have built around them - when we do replace with the Tiger Lake NUCs later this year, will be pretty well painless.
  • ingwe - Friday, April 17, 2020 - link

    Yeah the pricing is crazy. Which is disappointing because I think it is a pretty neat concept and I would love something like this from AMD.
  • Deicidium369 - Friday, April 17, 2020 - link

    AMD sells CPU and GPU - nothing else.
  • Sailor23M - Saturday, April 18, 2020 - link

    Agree, Intel has lost it way with the NUCs. They should be in the $500-$999 range, come with best embedded graphics that Intel can provide with lots of ports. Not sure who is excited about $3000 SFF box.
  • Qasar - Saturday, April 18, 2020 - link

    intel has lost its way in alot more then just nucs. it lost its way 5-7 years ago when it thought ot was unbeatable, and kept rehashing the same cpu over and over.

Log in

Don't have an account? Sign up now