System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For TRX40 we are running using Windows 10 64-bit with the 1909 update as per our Ryzen Threadripper 3960X and 3970X CPU review.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real-world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our testbed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)Power: OS Idle (w/ GTX 980)Power: Prime95 Blend (w/ GTX 1080)

The MSI Creator TRX40 not only delivers solid figures in both long idle and idle power states, but it also performs efficiently in our load testing with a reading which peaked at the wall of 344 W.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

In our non-UEFI POST time test, the MSI Creator TRX40 performed with will a POST of 30.1 seconds at default settings, and 27.3 seconds with all the non-vital controllers disabled. This puts it quicker than ASRock's TRX40 Taichi by just under a second, but ASUS's ROG Zenith II Extreme is the current leader in our testing so far.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test the DPC at the default settings straight from the box, and the MSI Creator TRX40 did well with a latency time of 180.3 us. This isn't as good as the ASUS ROG Zenith II Extreme, but both models are streets ahead of the ASRock TRX40 Taichi in terms of DPC Latency.

Board Features, Test Bed and Setup CPU Performance, Short Form
Comments Locked

42 Comments

View All Comments

  • carcakes - Wednesday, February 26, 2020 - link

    Start saving for an nforce motherboard!
  • bryanlarsen - Wednesday, February 26, 2020 - link

    If it had a BMC with IPMI we'd buy 16 of these. Such beasts do exist for older threadrippers I can't find any for current gen. Does anybody know of any BMC equipped motherboards for TRX40?
  • Slash3 - Thursday, February 27, 2020 - link

    At the moment there are only Epyc boards with that functionality for high core count CPUs. Asrock Rack will likely release a TRX40 based variant at some point, though, and is your best bet to check with.
  • realbabilu - Wednesday, February 26, 2020 - link

    The processor could be assigned as a cheap powerful server. But I think I don't see IPMI feature here.
  • supdawgwtfd - Thursday, February 27, 2020 - link

    Because it's not a server product perhaps?
  • pmjm - Thursday, February 27, 2020 - link

    Other than F1 2018, the gaming benchmarks seem to be largely GPU bound, which makes this data irrelevant to the motherboard. I think it was a mistake to put a 1080 on this test bed. You're testing one of the most powerful cpu+mobo combos ever mass-produced but choking your fps down with a mid-tier graphics card.
  • MDD1963 - Friday, February 28, 2020 - link

    The next generation of Threadrippers will have their gaming prowess thoroughly tested with a GTX1050... :)
  • Silma - Thursday, February 27, 2020 - link

    I guess if you can buy a $4k processor $700 for a motherboard is fine.
    I find it way too exepensive though. Not even Thunderbolt 3 compatible.
  • Arbie - Thursday, February 27, 2020 - link

    For years I bought only Asus motherboards, having started with them in part because they offered more fan headers and related controls. But these haven't improved much with time, and fan controls on the Crosshair Hero VI were so clunky that I never got good results.

    For the Ryzen 3900X I made the switch to MSI (Creation X570) and am very glad of it. Fan settings are easy to use, responsive, and more importantly have about 5x the resolution. Where the Asus BIOS worked in 5 degC and 10% rpm increments, the MSI is closer to 1 degC and 2%. This is hugely more effective and a pleasure to use - and I had no idea of it prior to hands-on!

    Differences like this aren't obvious in screenshots and reviewers never discuss them because (1) on an open bench they don't need case fans and (2) they build for a few performance runs, not quality of life. Though they do cover RGBling so I'll know exactly what I'm disabling.

    Anticipating a continuing lack of fan control details, I will probably stay with MSI. They did a good job with the Creation and BTW this Creator TRX40 board clearly has the same features.
  • dorcassmith - Monday, March 2, 2020 - link

    You are sure to get the best quality Best Cheap Nursing Writing Services in the shortest period when you seek Nursing Essay Writing Service and Top Nursing Writing Services.
    https://researchpapers247.com/nursing-writing-serv...

Log in

Don't have an account? Sign up now