System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For X570 we are running using Windows 10 64-bit with the 1903 update as per our Ryzen 3000 CPU review.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real-world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our testbed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)Power: OS Idle (w/ GTX 980)Power: Prime95 Blend (w/ GTX 980)

The ASRock X570 Phantom Gaming-ITX/TB3 is one of the better performers in our power consumption testing with a strong showing in all three of our tests. A smaller PCB tends to equate to fewer controllers and circuitry and can have an impact on this. With the most inefficient designs on the smaller form factor models getting found out very quickly, the ASRock X570 mini-ITX is highly competitive.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

In our POST testing, ASRock tends to field some of the best times in every platform and the X570 Phantom Gaming-ITX/TB3 is no different in this regard. It posted a competitive default POST time of just over 25 seconds which in comparison to the next board above this, the GIGABYTE X570 Aorus Xtreme which has a marginally slower POST time of 25.6 seconds. With controllers stripped down to the bare necessities, we managed to shave a further 1.6 seconds off the overall time it takes to load up Windows 10 on our testbed.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test the DPC at the default settings straight from the box, and the ASRock X570 Phantom Gaming-ITX/TB3 performed very well as expected. ASRock desktop models tend to have the upper hand in out of the box DPC latency performance, and this board continues that trend comfortably.

Board Features, Test Bed and Setup CPU Performance, Short Form
Comments Locked

64 Comments

View All Comments

  • kgreen747 - Wednesday, December 4, 2019 - link

    Update: An ASRock rep has stated that the M.2 slot is indeed connected to the CPU's PCIe lanes.
  • Cooe - Thursday, December 19, 2019 - link

    You meant to say "4x remaining X570 chipset lanes" not CPU lanes. The 4x CPU lanes are ALWAYS connected to the primary M.2 slot on any Zen platform. Why they didn't use the spare chipset lanes for another M.2 slot though is entirely beyond me.
  • DanaGoyette - Tuesday, April 21, 2020 - link

    If you view Device Manager in tree format, you can see that the M.2 slot is behind the chipset, not directly hanging off the CPU.
  • dcburr - Friday, October 30, 2020 - link

    ITX is a board for SFF PCs yet this is incompatible with most of the strong low profile air coolers. As an example Noctua makea the L12 Ghost S1 version which provides the absolute optimal air cooling for that SFF case YET is does not fit the ASRock board, nor do most of the best coolers.

Log in

Don't have an account? Sign up now