System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our test bed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power Long Idle (w/Integrated Grapics)
Power OS Idle (w/Integrated Grapics)
Power Prime95 Blend (w/Integrated Grapics)

When comparing the Biostar A10N-8800E SoC to a system running an AMD Athlon 200GE, the power consumption at load under a Prime95 blend is near identical. The benefits of the low powered 15 W TDP FX-8800P mobile processor are apparent when in idle states with a long idle power draw of 19.2 W, and an OS Idle draw of 20.6 W. However when we crank up the system with a compute heavy task, the 8800P and 200GE are evenly matched.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

In terms of POST time from a cold boot into Windows 10, the Biostar A10N-8800E on our test bench performed near identically to our B450 system installed with an Athlon 200GE processor. Turning off the all the controllers such as onboard sound and networking managed to shave a second over the default settings.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

Neither of the boards, from the factory, come with their options set to be optimized for DPC latency , but both posted good scores with the Biostar A10N-8800E SoC solution outputting a score of 228 ms. It pails in comparison to the more expensive 200GE, but this primarily comes down to the motherboards themselves.

Board Features, Comparing to AMD Athlon 200GE CPU Performance, Basic Tests
Comments Locked

73 Comments

View All Comments

  • _Rain - Wednesday, August 14, 2019 - link

    Both
  • Arbie - Wednesday, August 14, 2019 - link

    Whatever this board *can* do, not being human it can't "opine". And even humans can't "opine to be".
  • Rocket321 - Wednesday, August 14, 2019 - link

    It seems like the obvious thing to do here would be A) put a bunch of SATA on it, or B) put multiple NICs on it. A nice home nas / router / microserver. But as it is, it doesn't quite fit either niche.
  • Haawser - Thursday, August 15, 2019 - link

    I bought the A68N-5600 instead. It has an A10-4655M 'Trinity' (4C/6CUs) but also has 4x Sata ports instead of the M.2 slot. Seems to recognise and use DDR3-1600 without a problem. Makes for a very nice mini-PC that costs next to nothing. TBH I'm quite surprised how snappy it is in Windows 10 with a $20 64GB SSD boot drive. I had a dual core Atom mini-ITX before, and this is waaay faster. Like night and day.
  • quadibloc - Thursday, August 15, 2019 - link

    Looking at the photo, with the CPU in the center under a small ribbed heatsink with a fan on the top; except for the fact that the fan is rotated by 45 degrees, took me back to the days of my 486 builds, when CPUs were cooled that way, instead of by the elaborate coolers required for most of today's desktop processors.
  • John_M - Saturday, September 14, 2019 - link

    486s didn't have coolers - they just had bare ceramic packaging. The more elaborate AMD and Cyrix 486-compatible processors usually had passive heatsinks, but Pentiums were the first to be actively cooled.
  • Oxford Guy - Friday, August 16, 2019 - link

    For the price, Biostar should have included a better fan to support a BIOS switch to go between 35W and 15W.
  • Oxford Guy - Friday, August 16, 2019 - link

    Also, the latency settings are terrible for the RAM. Is there no way to tighten the timings via the BIOS?
  • Oxford Guy - Friday, August 16, 2019 - link

    I was able to run 16 GB of dual rank DDR3 2133 at 9-11-10 CR1 with an overclocked FX 8 core with full stability on a cheap motherboard. It seems truly unfortunate to witness a newer-generation memory have far worse performance on the roughly the same CPU architecture.
  • vowif - Friday, August 16, 2019 - link

    nice

Log in

Don't have an account? Sign up now