Sequential Read Performance

Our first test of sequential read performance uses short bursts of 128MB, issued as 128kB operations with no queuing. The test averages performance across eight bursts for a total of 1GB of data transferred from a drive containing 16GB of data. Between each burst the drive is given enough idle time to keep the overall duty cycle at 20%.

Burst 128kB Sequential Read (Queue Depth 1)

The burst sequential read performance from the WD Blue SN500 is a little over half the speed its PCIe 3 x2 interface can theoretically handle. That's significantly better than the other entry-level NVMe drives achieve, but nowhere close to what the top high-end drives with four PCIe lanes offer.

Our test of sustained sequential reads uses queue depths from 1 to 32, with the performance and power scores computed as the average of QD1, QD2 and QD4. Each queue depth is tested for up to one minute or 32GB transferred, from a drive containing 64GB of data. This test is run twice: once with the drive prepared by sequentially writing the test data, and again after the random write test has mixed things up, causing fragmentation inside the SSD that isn't visible to the OS. These two scores represent the two extremes of how the drive would perform under real-world usage, where wear leveling and modifications to some existing data will create some internal fragmentation that degrades performance, but usually not to the extent shown here.

Sustained 128kB Sequential Read

The WD Blue SN500's performance on the longer sequential read test is about the same as on the burst test, when reading back data that was written sequentially. The top high-end NVMe SSDs have widened their lead, but the other low-end SSDs have only gotten a bit closer to the SN500. When reading fragmented data that was written randomly, the playing field is a lot closer to level, and only a few drives are significantly faster than the SN500.

Sustained 128kB Sequential Read (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The extremely fast Samsung 970 EVO Plus takes the top spot for power efficiency on the sequential read test, but the WD NVMe drives aren't far behind. The SN500 does manage to beat Samsung's power efficiency when reading fragmented data.

The WD Blue SN500 requires a queue depth of about 8 or higher to hit full speed for 128kB sequential reads. At high queue depths it remains the fastest of the PCIe x2 drives, but the slower Toshiba RC100 uses a bit less power.

The sequential read performance of the WD Blue SN500 is well beyond what SATA drives can manage, but much higher speeds are possible from high-end NVMe drives. At the speeds it does attain, the SN500 is the lowest-power drive we've tested.

Sequential Write Performance

Our test of sequential write burst performance is structured identically to the sequential read burst performance test save for the direction of the data transfer. Each burst writes 128MB as 128kB operations issued at QD1, for a total of 1GB of data written to a drive containing 16GB of data.

Burst 128kB Sequential Write (Queue Depth 1)

The burst sequential write test writes much more data than the burst random write test, but it's still much less than even the WD Blue SN500's small SLC cache. This allows the SN500 to deliver the best burst write performance score in its capacity class.

Our test of sustained sequential writes is structured identically to our sustained sequential read test, save for the direction of the data transfers. Queue depths range from 1 to 32 and each queue depth is tested for up to one minute or 32GB, followed by up to one minute of idle time for the drive to cool off and perform garbage collection. The test is confined to a 64GB span of the drive.

Sustained 128kB Sequential Write

On the longer sequential write test, the WD Blue SN500 fills its SLC cache very quickly and then drops down to be only slightly faster than the 1TB WD Blue SATA SSD. Several of the slower NVMe SSDs end up underperforming that SATA SSD.

Sustained 128kB Sequential Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The power efficiency of the SN500 during the sequential write test is decent, but the Toshiba RC100 is faster and uses less power, and some of the high-end drives have enough of a performance advantage to more than overcome their increased power consumption relative to the SN500.

As with random writes, the small size of the SLC cache on the SN500 means its effects are largely invisible during the sustained sequential write test. The SN500's performance hovers a bit below 500MB/s and its power consumption is just below 2W.

The performance and power consumption of the WD Blue SN500 aren't quite as good as the best SATA drives, but it's decent. Compared to NVMe drives however, there are alternatives that can offer double the performance at about the same power level, or are fast enough to slightly exceed the SATA speed limit while drawing less power than the SN500 requires.

Random Performance Mixed Read/Write Performance
Comments Locked

50 Comments

View All Comments

  • kpb321 - Friday, April 19, 2019 - link

    A lot of people don't need much space. I just upgraded my wife from a 128gb SSD to a 256gb SSD. The 128GB SSD was getting a little full because of pictures of our son and I was occasionally having to free up space for Windows update etc. We could have stuck with the 128gb and migrated her entire picture collection to the NAS or kept freeing up space when needed but a 256 SATA SSD is so cheap I figured why not upgrade. Her old 128gb got stuck in my in-law's computer to replace the old slow 500gb hd they had in the system. They are using less than half the space on that SSD so should be fine for a long time and if really needed I can always setup the 500gb hd as a secondary storage drive for them. The old days of 32/64gb SSD being barely adequate are passed. Windows + a decent selection of apps is fine on a 128gb SSD and 256gb gives even more head room.
  • jabber - Saturday, April 20, 2019 - link

    Been running my work laptop on a 64GB SSD for several years now. Some of us don't need to keep masses of data on a device that goes out and about. Sometimes carrying masses of data is a liability.
  • RealBeast - Friday, April 19, 2019 - link

    Don't know about mainstream, but no way that I would waste precious M.2 slots on some small slow drive like this one.

    Sure a .5-2TB, but not really a 660P for me (they should be on SATA ports at my house). I use those ports for fast drives.
  • beginner99 - Saturday, April 20, 2019 - link

    In a laptop you might have a point but in a desktop? Put the OS on it and the most used apps like browser. If you don't game you are already set. For games you can use a hdd or a large cheap sata ssd as it doesn't really matter much what you use.
  • stephenbrooks - Sunday, April 21, 2019 - link

    If you have a lot of games you'll want both large capacity and fast access.

    But other than capacity, this "low end" NVMe drive looks great. It's clearly possible for them to do 1TB+ versions in the future too, in one way or another.
  • Korguz - Sunday, April 21, 2019 - link

    fazalmajid you may not see it.. but others do.. for me.. i usually use a small drive for my C drive, aka windows drive, before it was 120, now.. as 120 gig drives have next to vanished, im using 250 gig drives, with other bigger drives for other things.. so when it come times for format, and install fresh.. instead of having to move and then redo a big drive.. all i have to deal with, is a small drive with little to no " i want to keep this so i need to move it to another drive " swapping...
  • stephenbrooks - Sunday, April 21, 2019 - link

    I found Windows wants to put "User" data and "Program Files" on the same primary drive, so it can grow in size and even end up containing data I want to keep, even if I try to separate the two.
  • Korguz - Monday, April 22, 2019 - link

    i check those 2 directories as part of the " i want to keep this so i need to move it to another drive " searching, and then moving... :-)
  • tipoo - Friday, April 19, 2019 - link

    I'd still be interested in seeing a T2 SSD (Apple) put through these paces. Usually they did great in sequential tests but not so much in 4k randoms, so I wonder how it would do on, say, Destroyer.
  • kpb321 - Friday, April 19, 2019 - link

    This drive did exceed my expectations for a x2 pci-e lanes with no Dram and no HBM but the pricing is going to be key. The SM2262 drives have gotten pretty inexpensive and don't leave a lot of room for a drive like this even as good as it may be for what it is. I just recently picked up the ADATA version of the HP EX920 @ $73 for the 480gb drive. That a x4 drive with dram on it and should beat this drive pretty consistently. Personally this drive would need to be down around $60 before I'd consider the price difference meaningful enough to consider this drive.

Log in

Don't have an account? Sign up now