CPU Performance: Web and Legacy Tests

While more the focus of low-end and small form factor systems, web-based benchmarks are notoriously difficult to standardize. Modern web browsers are frequently updated, with no recourse to disable those updates, and as such there is difficulty in keeping a common platform. The fast paced nature of browser development means that version numbers (and performance) can change from week to week. Despite this, web tests are often a good measure of user experience: a lot of what most office work is today revolves around web applications, particularly email and office apps, but also interfaces and development environments. Our web tests include some of the industry standard tests, as well as a few popular but older tests.

We have also included our legacy benchmarks in this section, representing a stack of older code for popular benchmarks.

All of our benchmark results can also be found in our benchmark engine, Bench.

WebXPRT 3: Modern Real-World Web Tasks, including AI

The company behind the XPRT test suites, Principled Technologies, has recently released the latest web-test, and rather than attach a year to the name have just called it ‘3’. This latest test (as we started the suite) has built upon and developed the ethos of previous tests: user interaction, office compute, graph generation, list sorting, HTML5, image manipulation, and even goes as far as some AI testing.

For our benchmark, we run the standard test which goes through the benchmark list seven times and provides a final result. We run this standard test four times, and take an average.

Users can access the WebXPRT test at http://principledtechnologies.com/benchmarkxprt/webxprt/

WebXPRT 3 (2018)

WebXPRT 2015: HTML5 and Javascript Web UX Testing

The older version of WebXPRT is the 2015 edition, which focuses on a slightly different set of web technologies and frameworks that are in use today. This is still a relevant test, especially for users interacting with not-the-latest web applications in the market, of which there are a lot. Web framework development is often very quick but with high turnover, meaning that frameworks are quickly developed, built-upon, used, and then developers move on to the next, and adjusting an application to a new framework is a difficult arduous task, especially with rapid development cycles. This leaves a lot of applications as ‘fixed-in-time’, and relevant to user experience for many years.

Similar to WebXPRT3, the main benchmark is a sectional run repeated seven times, with a final score. We repeat the whole thing four times, and average those final scores.

WebXPRT15

Speedometer 2: JavaScript Frameworks

Our newest web test is Speedometer 2, which is a accrued test over a series of javascript frameworks to do three simple things: built a list, enable each item in the list, and remove the list. All the frameworks implement the same visual cues, but obviously apply them from different coding angles.

Our test goes through the list of frameworks, and produces a final score indicative of ‘rpm’, one of the benchmarks internal metrics. We report this final score.

Speedometer 2

Google Octane 2.0: Core Web Compute

A popular web test for several years, but now no longer being updated, is Octane, developed by Google. Version 2.0 of the test performs the best part of two-dozen compute related tasks, such as regular expressions, cryptography, ray tracing, emulation, and Navier-Stokes physics calculations.

The test gives each sub-test a score and produces a geometric mean of the set as a final result. We run the full benchmark four times, and average the final results.

Google Octane 2.0

Mozilla Kraken 1.1: Core Web Compute

Even older than Octane is Kraken, this time developed by Mozilla. This is an older test that does similar computational mechanics, such as audio processing or image filtering. Kraken seems to produce a highly variable result depending on the browser version, as it is a test that is keenly optimized for.

The main benchmark runs through each of the sub-tests ten times and produces an average time to completion for each loop, given in milliseconds. We run the full benchmark four times and take an average of the time taken.

Mozilla Kraken 1.1

3DPM v1: Naïve Code Variant of 3DPM v2.1

The first legacy test in the suite is the first version of our 3DPM benchmark. This is the ultimate naïve version of the code, as if it was written by scientist with no knowledge of how computer hardware, compilers, or optimization works (which in fact, it was at the start). This represents a large body of scientific simulation out in the wild, where getting the answer is more important than it being fast (getting a result in 4 days is acceptable if it’s correct, rather than sending someone away for a year to learn to code and getting the result in 5 minutes).

In this version, the only real optimization was in the compiler flags (-O2, -fp:fast), compiling it in release mode, and enabling OpenMP in the main compute loops. The loops were not configured for function size, and one of the key slowdowns is false sharing in the cache. It also has long dependency chains based on the random number generation, which leads to relatively poor performance on specific compute microarchitectures.

3DPM v1 can be downloaded with our 3DPM v2 code here: 3DPMv2.1.rar (13.0 MB)

3DPM v1 Single Threaded3DPM v1 Multi-Threaded

x264 HD 3.0: Older Transcode Test

This transcoding test is super old, and was used by Anand back in the day of Pentium 4 and Athlon II processors. Here a standardized 720p video is transcoded with a two-pass conversion, with the benchmark showing the frames-per-second of each pass. This benchmark is single-threaded, and between some micro-architectures we seem to actually hit an instructions-per-clock wall.

x264 HD 3.0 Pass 1x264 HD 3.0 Pass 2

CPU Performance: Encoding Tests Gaming: World of Tanks enCore
Comments Locked

213 Comments

View All Comments

  • nandnandnand - Friday, May 10, 2019 - link

    Just get a 12 or 16-core Ryzen in 2+ months.
  • mode_13h - Saturday, May 11, 2019 - link

    If you get a gun, you'll just have to waste more money on ammo.

    And the thing about targets is they don't shoot back. So, it gets boring pretty quickly. Paintball is more fun.
  • Ghodzilla5150 - Saturday, May 11, 2019 - link

    I just built an AMD Rig with a Ryzen 7 2700X, ASRock X470 Taichi Ultimate, Sapphire Nitro+ RX 590, 32gb G.SKILL RIPJAWS Series V & 2x 1TB M.2 drives (1 for OS and other for Gaming). Boots to Win 10 Pro in 8 seconds. Blazing fast in games.

    I just bought a Smith & Wesson 686 Plus 357 Magnum so I know what it's like to want a gun as well. I'm looking at getting a LMT Valkyrie 224.
  • mode_13h - Saturday, May 11, 2019 - link

    Get a Ryzen 9 with 16 cores.
  • MrCommunistGen - Friday, May 10, 2019 - link

    I'm in almost exactly the same boat. I have a 3770K on Z77 running at 4.2GHz. That's all that I could get out of my chip without thermal throttling under heavy load with a 212 EVO... already running the lowest possible voltage that it is stable. Remounted the cooler several times, upgraded the fan, and switched out the paste to Thermal Grizzly but it didn't help enough to get me to 4.3GHz.
    I considered throwing a bigger cooler at it but decided to save that money for my next build instead.

    Running 1440p 75Hz Freesync (only 48-75Hz range) display that I picked up before Vega launched with the intention of buying Vega when it released -- but I missed buying it at launch, then it was unavailable, then it was expensive, then the crypto boom meant you couldn't get one... so I bought a 1080Ti instead. Even with the newly added Freesync compatibility I'm getting a reasonable bit of stutter that frustrates me.

    Strongly considering Zen2 when it comes out. I never seriously considered upgrading to anything else so far, not Haswell through KBL due to lack of performance increase for the price, and not CFL or CFL-R due to high cost. 2700X just doesn't quite have enough single-thread performance increase, but based on the swirling rumors I think Zen2 will get there.
  • Polyclot - Saturday, May 11, 2019 - link

    I have a 2600k/z77-a. I was under the impression that the mobo wouldn't go above 4.2. At least that's where I'm at. Love the combo. No complaints
  • CaedenV - Saturday, May 11, 2019 - link

    Nope, the cap is for the non-K chips. There you have a 42x multiplier cap with a 100 MHz clock, so you are limited to 4.2... unless you also change the base clock, but that causes other issues that are not worth the effort to address.
    If you have a K chip, the only limits are your RAM, and cooling. Almost all Sandy chips can hit 4.5GHz, with a majority capable of going above 4.8!
  • XXxPro_bowler420xXx - Saturday, May 11, 2019 - link

    I have a non k 3770 running at 4.2ghz all core, 4.4 single. It's also undervolted to 1.08V and hits a MAX temp of 55-56C after months of use on a corsair AIO and liquid metal . Usually runs in the high 40s under load. Before de-lidding it, it ran in the high 60s at 4.2ghz on a corsair air cooler and arctic mx4 paste. Why are your temperatures so high?

    AsRock z77 extreme 4 and 16GB 2133 ram.
  • XXxPro_bowler420xXx - Saturday, May 11, 2019 - link

    Also I agree with you on zen 2. Finally a worthy successor.
  • CaedenV - Saturday, May 11, 2019 - link

    Yep, if I were to upgrade today, it would be an AMD chip. And that is hard to say/admit with all of my inner Intel fanboy.

Log in

Don't have an account? Sign up now