Upgrading from an Intel Core i7-2600K: Yes

Back in 2010-2011, life was simple. We were relishing in benchmarks like CineBench R10, SuperPI, and no-one had even thought of trying to transcode video on any sort of scale. In 2019, the landscape has changed: gamers gonna stream, designers gonna design, scientists gonna simulate, and emulators gonna emulate. The way that software is designed has changed substantially as well, with more care taken for memory allocations, multiple cores and threads, and with fast storage in mind. Compilers are smarter too, and all the optimizations for the older platforms are in those code bases.

We regularly speak to CPU architects that describe how they build new processors for the next generation: by analyzing modern workload requirements. In a future of machine learning, for example, we’re now seeing hardware on mobile processors dedicated to accelerating neural networks for things like smartphone photography. (It’s interesting that smartphone SoCs today, in day-to-day use, are arguably more diverse than desktops in that regard.)

Ultimately, benchmarks have changed too. What we tested back in 2011 in our Core i7-2600K review was indicative of the way people were using their computers then, and in 2019 we are testing how people are using their computers today. On some level, one expects that what would have been the balance of compute/storage/resources back then might have adjusted, and as a result, older parts may perform better or worse than expected.

For this review, I wanted to compare an eternal idol for enthusiast desktop computing with its more modern counterparts. The Sandy Bridge Core i7-2600K that was released in 2011 was an enthusiasts dream: significantly faster than the previous generation, priced right, and offered a substantial performance boost when overclocked. The fact that it overclocked well was the crux of its staying power: if users were seeing 20-40%+ performance from an overclock and some fast memory, then the several years of Intel offering baseline 3-8% performance increases were scoffed at, and users did not upgrade.

It's a Core i7 Family Photo

The Core i7-2600K was a quad core processor with hyperthreading. Intel launched five more families of Core i7 that were also quad core with hyperthreading: the Core i7-3770K, i7-4770K, i7-5775C, 6700K, and 7700K, before it moved up to six cores (HT) with the 8700K and eight cores (no HT) with the 9700K. Each of those generations of quad cores offered slightly more frequency, sometimes new instructions, sometimes better transistor density, sometimes better graphics, and sometimes a better platform.

Features like new instructions, better integrated graphics, or the platform are valid reasons to push an upgrade, even if the raw performance gain in most tasks is minor. Moving to PCIe 3.0 for graphics, or moving to DDR4 to access higher capacity memory modules, or shifting to NVMe storage with more diverse chipset support all helped users that bypassed the popular 2600K.

In this review, we tested the Core i7-2600K at Intel’s recommended release settings (known as ‘stock’), and an overclocked Core i7-2600K, pushing up from 3.5 GHz all-core to 4.7 GHz all-core, and with faster memory. For comparison to newer CPUs, we chose the Core i7-7700K, Intel’s final Core i7 quad-core for the desktop, representing the best Intel has offered in a quad-core with HT package, and the Core i7-9700K, the latest high-end Core i7 processor.

The results from our testing paint an interesting picture, and as a result so do our conclusions. Our CPU testing was quite clear – in almost every test, the overclock on the 2600K was only able to half the deficit between the 7700K and the 2600K when both were run at stock. Whenever the overclock gave 20% extra performance, the 7700K was another 20% ahead. The only benchmarks that differed were the benchmarks that were AVX2 capable, where the 7700K had a massive lead due to the fact that it supports AVX2. In all our CPU tests, the Core i7-9700K by comparison blew them all out of the water.

For anyone still using a Core i7-2600K for CPU testing, even when overclocked, it’s time to feel the benefits of an upgrade.


The GPU testing had a different result. From 2011 to 2019, enthusiast gamers have moved from 1080p in one of two directions: higher resolutions or higher framerates. The direction moved depends on the type of game played, and modern game engines are geared up to cater for both, and have been optimized for the latest hardware with the latest APIs.

For users going up in resolution, to 4K and beyond, the i7-2600K when overclocked performs just as well as the latest Core i7-9700K. The stock 2600K is a little behind, but not overly noticeable unless you drill down into specific titles. But the overclocked Core i7-2600K is still a great chip for high resolution 60 FPS gaming.

For users staying at 1080p (or 1440p) but looking at high frame rates to drive higher refresh rate displays, there is more of a tangible benefit here. Newer games on modern APIs can use more threads, and the higher number of draw calls required per frame (and for more frames) can be driven better with the latest Core i7 hardware. The Core i7-7700K gives a good boost, which can be bettered with the full eight cores of the Core i7-9700K. Both of these chips can be overclocked too, which we’ve not covered here.

The Bottom Line

Back during 2011 and 2012, I was a competitive overclocker, and my results were focused around using the Core i7-2600K as the base for pushing my CPU and GPUs to the limits. The day-to-day performance gains for any of my CPU or GPU tests were tangible, not only for work but also for gaming at 1080p.

Fast forward to 2019, and there is only one or two reasons to stick to that old system, even when overclocked. The obvious reason is cost: if you can’t afford an upgrade, then that’s a very legitimate reason not to, and I hope you’re still having fun with it. The second reason to not upgrade is that the only thing you do, as an enthusiast gamer with a modern day graphics card, is game at 4K.

There are a million other reasons to upgrade, even to the Core i7-7700K: anything CPU related, memory support (capacity and speed), storage support, newer chipsets, newer connectivity standards, AVX2, PCIe 3.0, multi-tasking, gaming and streaming, NVMe. Or if you’re that way inclined, the RGB LED fad of modern components.

Back in my day, we installed games from DVDs and used cold cathodes for RGB.

Picture from 2006? – Battlefield 2 on a CRT.
Running an ATI X1900XTX on an AMD Athlon 3400+

Analyzing the Results: Impressive and Depressing?


View All Comments

  • Ranger90125 - Tuesday, May 14, 2019 - link

    Using a 4790K for years and increasingly disillusioned with Intel's shady practices and lack of progress. Last AMD processor was an Athlon 64 3400 from the glory days of Intel decimated by the competition. Next processor will be 7nm Zen and I look forward to Intel being under the cosh for as long as AMD can manage it. Thanks for a great nostalgic read...I liked the lean and mean Cutress LAN machine :) Reply
  • akyp - Tuesday, May 14, 2019 - link

    In less than 5 months my i7-860 will celebrate its 10th birthday. I've been keeping an eye on Ryzen 3 and Navi but never feel the need to upgrade (unless something goes wrong). It doesn't feel any slower than my work-issued i7-6700. Reply
  • curley60 - Tuesday, May 14, 2019 - link

    About 5 years ago I went backwards and downgraded(?) my Core i7 2600K to a Gulftown Core i7 990x when they became affordable. The Core i7 990x on my Asus Rampage Formula is running @ 4.660 and is really quite faster in all benchmarks than the Core i7 2600K. Those gulftown processors were ahead of their time. Sure a core i7 7700k is 18% faster in single core work but the 990x destroys it in multi-threaded work. As long as it keeps running I'm going to keep using it with my current GTX 1080ti. Reply
  • Potatooo - Wednesday, May 15, 2019 - link

    Would like to see comparisons with a more budget GPU (e.g. 1060/580) and 1080p gaming, probably a more realistic pairing. Reply
  • Bash99 - Wednesday, May 15, 2019 - link

    It's wired Handbrake 1.1 hevc 1080p encoding can have 60 fps with x265, even in very fast setting, I can only got 1x fps. Reply
  • rexhab - Thursday, May 16, 2019 - link

    I just upgrad from a 5 2500 to a i7 2600K ;) ^^ Reply
  • ballsystemlord - Thursday, May 16, 2019 - link

    Spelling and grammar corrections:

    "Sandy Bridge as a whole was a much more dynamic of a beast than anything that's come before it."
    Excess "of a":
    "Sandy Bridge as a whole was a much more dynamic beast than anything that's come before it."

    "They also have AVX2, which draw a lot of power in our power test."
    Missing "s":
    "They also have AVX2, which draws a lot of power in our power test."
  • oktat - Sunday, May 19, 2019 - link

    would you update the civilization vi ai turn time when technical issues fixed? Reply
  • bullshooter4040 - Wednesday, May 22, 2019 - link

    This was a fun article to read through. A great look into the CPU that defined the decade and a wonderful send-off (or not!?!) to the greatest CPU processor since the Core 2 Duo.

    Up until last year, I had the younger cousin: i5 2500k, which with a lack of hyper-threading, made it much more difficult to keep up in much more CPU intensive tasks (even for a gamer) in 2018 and I made the switch to team orange.

    Ryzen is here now, promising longevity, of not just its CPU, but more importantly - the AM4 platform - something that Intel did not accomplish with any of it's processors.

    With the Ryzen 3000 series, It's time to jump on board.
  • PyroHoltz - Thursday, May 30, 2019 - link

    NVMe is fully possible on the 2600k gen motherboards, just takes a bit of BIOS modifications to add the appropriate drivers. Reply

Log in

Don't have an account? Sign up now