CPU Performance: Web and Legacy Tests

While more the focus of low-end and small form factor systems, web-based benchmarks are notoriously difficult to standardize. Modern web browsers are frequently updated, with no recourse to disable those updates, and as such there is difficulty in keeping a common platform. The fast paced nature of browser development means that version numbers (and performance) can change from week to week. Despite this, web tests are often a good measure of user experience: a lot of what most office work is today revolves around web applications, particularly email and office apps, but also interfaces and development environments. Our web tests include some of the industry standard tests, as well as a few popular but older tests.

We have also included our legacy benchmarks in this section, representing a stack of older code for popular benchmarks.

All of our benchmark results can also be found in our benchmark engine, Bench.

WebXPRT 3: Modern Real-World Web Tasks, including AI

The company behind the XPRT test suites, Principled Technologies, has recently released the latest web-test, and rather than attach a year to the name have just called it ‘3’. This latest test (as we started the suite) has built upon and developed the ethos of previous tests: user interaction, office compute, graph generation, list sorting, HTML5, image manipulation, and even goes as far as some AI testing.

For our benchmark, we run the standard test which goes through the benchmark list seven times and provides a final result. We run this standard test four times, and take an average.

Users can access the WebXPRT test at http://principledtechnologies.com/benchmarkxprt/webxprt/

WebXPRT 3 (2018)

WebXPRT 2015: HTML5 and Javascript Web UX Testing

The older version of WebXPRT is the 2015 edition, which focuses on a slightly different set of web technologies and frameworks that are in use today. This is still a relevant test, especially for users interacting with not-the-latest web applications in the market, of which there are a lot. Web framework development is often very quick but with high turnover, meaning that frameworks are quickly developed, built-upon, used, and then developers move on to the next, and adjusting an application to a new framework is a difficult arduous task, especially with rapid development cycles. This leaves a lot of applications as ‘fixed-in-time’, and relevant to user experience for many years.

Similar to WebXPRT3, the main benchmark is a sectional run repeated seven times, with a final score. We repeat the whole thing four times, and average those final scores.

WebXPRT15

Speedometer 2: JavaScript Frameworks

Our newest web test is Speedometer 2, which is a accrued test over a series of javascript frameworks to do three simple things: built a list, enable each item in the list, and remove the list. All the frameworks implement the same visual cues, but obviously apply them from different coding angles.

Our test goes through the list of frameworks, and produces a final score indicative of ‘rpm’, one of the benchmarks internal metrics. We report this final score.

Speedometer 2

Google Octane 2.0: Core Web Compute

A popular web test for several years, but now no longer being updated, is Octane, developed by Google. Version 2.0 of the test performs the best part of two-dozen compute related tasks, such as regular expressions, cryptography, ray tracing, emulation, and Navier-Stokes physics calculations.

The test gives each sub-test a score and produces a geometric mean of the set as a final result. We run the full benchmark four times, and average the final results.

Google Octane 2.0

Mozilla Kraken 1.1: Core Web Compute

Even older than Octane is Kraken, this time developed by Mozilla. This is an older test that does similar computational mechanics, such as audio processing or image filtering. Kraken seems to produce a highly variable result depending on the browser version, as it is a test that is keenly optimized for.

The main benchmark runs through each of the sub-tests ten times and produces an average time to completion for each loop, given in milliseconds. We run the full benchmark four times and take an average of the time taken.

Mozilla Kraken 1.1

3DPM v1: Naïve Code Variant of 3DPM v2.1

The first legacy test in the suite is the first version of our 3DPM benchmark. This is the ultimate naïve version of the code, as if it was written by scientist with no knowledge of how computer hardware, compilers, or optimization works (which in fact, it was at the start). This represents a large body of scientific simulation out in the wild, where getting the answer is more important than it being fast (getting a result in 4 days is acceptable if it’s correct, rather than sending someone away for a year to learn to code and getting the result in 5 minutes).

In this version, the only real optimization was in the compiler flags (-O2, -fp:fast), compiling it in release mode, and enabling OpenMP in the main compute loops. The loops were not configured for function size, and one of the key slowdowns is false sharing in the cache. It also has long dependency chains based on the random number generation, which leads to relatively poor performance on specific compute microarchitectures.

3DPM v1 can be downloaded with our 3DPM v2 code here: 3DPMv2.1.rar (13.0 MB)

3DPM v1 Single Threaded3DPM v1 Multi-Threaded

x264 HD 3.0: Older Transcode Test

This transcoding test is super old, and was used by Anand back in the day of Pentium 4 and Athlon II processors. Here a standardized 720p video is transcoded with a two-pass conversion, with the benchmark showing the frames-per-second of each pass. This benchmark is single-threaded, and between some micro-architectures we seem to actually hit an instructions-per-clock wall.

x264 HD 3.0 Pass 1x264 HD 3.0 Pass 2

CPU Performance: Encoding Tests Gaming: World of Tanks enCore
Comments Locked

213 Comments

View All Comments

  • mr_tawan - Sunday, May 12, 2019 - link

    Just upgraded to Core i7 4790 (from i5 4460) late last year. At first I was thinking about upgrading to the shiny Ryzen 7, but overall cost is pretty high considering I have my H97 mainboard with 16GB of memory. I don't want to shell out that much money and getting stuck at older platform, again.

    It does work ok, with the performance around the current gen Core i5 I guess (with less power efficiency). Consider what I paid, I think it's not too bad.
  • just4U - Sunday, May 12, 2019 - link

    A interesting read there Ian. I started to notice a slow down on 2600K class systems a few years ago when I worked on them.. (I hadn't used one since 2014) For me.. If I can notice those slowdowns in real time then it's time to move away from that CPU. The 4790K appears to still be holding up ok but older 3000/2000 chips not so well.
  • crotach - Sunday, May 12, 2019 - link

    Still running 3930k Sandy Bridge.

    Maybe Ryzen 3000 will give me a reason to upgrade.
  • AndrewJacksonZA - Sunday, May 12, 2019 - link

    Best quote out of the entire article:
    "In 2019, the landscape has changed: gamers gonna stream, designers gonna design, scientists gonna simulate, and emulators gonna emulate" :-)

    But seriously though, for me, when I upgraded from a Core2Duo E6750 with 4GB of RAM to an i7-6700 (non-K) with 16GB of RAM, it was simply amazing. I was fully expecting that going from an i7-2600K to an i7-9700K would be similar - and it is for things like compiling but not for things like gaming.

    Thanks for the aricle, Ian! Dig the LAN setup. :-)
  • Targon - Sunday, May 12, 2019 - link

    Why would you test a CPU and use a framerate test from Civilization 6, rather than the turn length benchmark which is a true test of the CPU rather than the GPU? Turn based games SHOULD be there as CPU tests, and only caring about the framerates seems to be wrong.
  • Oxford Guy - Sunday, May 12, 2019 - link

    When your overclock fails in one test you're unstable.

    When it fails in four, as in this article, you're both unstable and laughable.

    "Had issues". "For whatever reason". I will assume this is all intended to be humor.
  • DeltaIO - Monday, May 13, 2019 - link

    Interesting article to read. I've only recently upgraded from my 2600k to the 9700k, even that was begrudgingly as the 2600k itself still works fine, however the motherboard simply decided to give up on me.

    I've got to say though, the difference in the subsystems (NVMe vs SSD makes for some great load times for pretty much everything) as well as other tangible benefits (gaming at higher frame rates) is quite apparent now I have upgraded.

    I would have upgraded far sooner had Intel not chosen to keep changing the sockets, swapping out just a CPU is far simpler than rebuilding the entire system.
  • Tedaz - Monday, May 13, 2019 - link

    Expecting i9-9900K joins the article.
  • Badelhas - Monday, May 13, 2019 - link

    I an still with a 2500K overclocked to 4.8Ghz, 8Gb of DDR3 1600Mhz RAM and, a 850 Evo SSD and a Nvidia 1070. I honestly see no reason to upgrade.
    IAN: All your testing basically demonstrated that there is no real reason that justifies spending 400 bucks for a new CPU, 200 bucks for a new Motherboard and 100 bucks for new DDR4 Ram - This totals 700 dollars. But your conclusion is that we should upgrade?! I dont get it.
  • tmanini - Monday, May 13, 2019 - link

    Go ahead and re-read his "Bottom Line" concluding articles: gives a few specific recommendations where is may and may not be to your advantage. And if you aren't desiring/needing all of the other new bells/whistles that go along with newer boards and architecture, then you are set (he says).
    Seems pretty clear.

Log in

Don't have an account? Sign up now