CPU Performance: Web and Legacy Tests

While more the focus of low-end and small form factor systems, web-based benchmarks are notoriously difficult to standardize. Modern web browsers are frequently updated, with no recourse to disable those updates, and as such there is difficulty in keeping a common platform. The fast paced nature of browser development means that version numbers (and performance) can change from week to week. Despite this, web tests are often a good measure of user experience: a lot of what most office work is today revolves around web applications, particularly email and office apps, but also interfaces and development environments. Our web tests include some of the industry standard tests, as well as a few popular but older tests.

We have also included our legacy benchmarks in this section, representing a stack of older code for popular benchmarks.

All of our benchmark results can also be found in our benchmark engine, Bench.

WebXPRT 3: Modern Real-World Web Tasks, including AI

The company behind the XPRT test suites, Principled Technologies, has recently released the latest web-test, and rather than attach a year to the name have just called it ‘3’. This latest test (as we started the suite) has built upon and developed the ethos of previous tests: user interaction, office compute, graph generation, list sorting, HTML5, image manipulation, and even goes as far as some AI testing.

For our benchmark, we run the standard test which goes through the benchmark list seven times and provides a final result. We run this standard test four times, and take an average.

Users can access the WebXPRT test at http://principledtechnologies.com/benchmarkxprt/webxprt/

WebXPRT 3 (2018)

WebXPRT 2015: HTML5 and Javascript Web UX Testing

The older version of WebXPRT is the 2015 edition, which focuses on a slightly different set of web technologies and frameworks that are in use today. This is still a relevant test, especially for users interacting with not-the-latest web applications in the market, of which there are a lot. Web framework development is often very quick but with high turnover, meaning that frameworks are quickly developed, built-upon, used, and then developers move on to the next, and adjusting an application to a new framework is a difficult arduous task, especially with rapid development cycles. This leaves a lot of applications as ‘fixed-in-time’, and relevant to user experience for many years.

Similar to WebXPRT3, the main benchmark is a sectional run repeated seven times, with a final score. We repeat the whole thing four times, and average those final scores.

WebXPRT15

Speedometer 2: JavaScript Frameworks

Our newest web test is Speedometer 2, which is a accrued test over a series of javascript frameworks to do three simple things: built a list, enable each item in the list, and remove the list. All the frameworks implement the same visual cues, but obviously apply them from different coding angles.

Our test goes through the list of frameworks, and produces a final score indicative of ‘rpm’, one of the benchmarks internal metrics. We report this final score.

Speedometer 2

Google Octane 2.0: Core Web Compute

A popular web test for several years, but now no longer being updated, is Octane, developed by Google. Version 2.0 of the test performs the best part of two-dozen compute related tasks, such as regular expressions, cryptography, ray tracing, emulation, and Navier-Stokes physics calculations.

The test gives each sub-test a score and produces a geometric mean of the set as a final result. We run the full benchmark four times, and average the final results.

Google Octane 2.0

Mozilla Kraken 1.1: Core Web Compute

Even older than Octane is Kraken, this time developed by Mozilla. This is an older test that does similar computational mechanics, such as audio processing or image filtering. Kraken seems to produce a highly variable result depending on the browser version, as it is a test that is keenly optimized for.

The main benchmark runs through each of the sub-tests ten times and produces an average time to completion for each loop, given in milliseconds. We run the full benchmark four times and take an average of the time taken.

Mozilla Kraken 1.1

3DPM v1: Naïve Code Variant of 3DPM v2.1

The first legacy test in the suite is the first version of our 3DPM benchmark. This is the ultimate naïve version of the code, as if it was written by scientist with no knowledge of how computer hardware, compilers, or optimization works (which in fact, it was at the start). This represents a large body of scientific simulation out in the wild, where getting the answer is more important than it being fast (getting a result in 4 days is acceptable if it’s correct, rather than sending someone away for a year to learn to code and getting the result in 5 minutes).

In this version, the only real optimization was in the compiler flags (-O2, -fp:fast), compiling it in release mode, and enabling OpenMP in the main compute loops. The loops were not configured for function size, and one of the key slowdowns is false sharing in the cache. It also has long dependency chains based on the random number generation, which leads to relatively poor performance on specific compute microarchitectures.

3DPM v1 can be downloaded with our 3DPM v2 code here: 3DPMv2.1.rar (13.0 MB)

3DPM v1 Single Threaded3DPM v1 Multi-Threaded

x264 HD 3.0: Older Transcode Test

This transcoding test is super old, and was used by Anand back in the day of Pentium 4 and Athlon II processors. Here a standardized 720p video is transcoded with a two-pass conversion, with the benchmark showing the frames-per-second of each pass. This benchmark is single-threaded, and between some micro-architectures we seem to actually hit an instructions-per-clock wall.

x264 HD 3.0 Pass 1x264 HD 3.0 Pass 2

CPU Performance: Encoding Tests Gaming: World of Tanks enCore
Comments Locked

213 Comments

View All Comments

  • cwolf78 - Friday, May 10, 2019 - link

    Is there any way you can do a similar comparison with the i5 CPUs? I have a 3570k OC to 4.2 GHz and its starting to struggle in some games. E.g., I can get over 60 fps in AC Odyssey for the most part, but there's all sorts of annoying spikes where the min FPS will tank for whatever reason. I'm running a GTX 970 that's OC'ed pretty close to a 980 and I don't know if it would be worth upgrading that or if my CPU would strangle anything faster. Also, whats the performance difference between an OC 3570k and a OC 3770k in modern games?
  • RSAUser - Saturday, May 11, 2019 - link

    This is mostly due to being 4 threads, that's also why I wouldn't go with anything <8 threads as you'll see it happen more and more as we all move to higher core counts.
    Plus Ubisoft has probably got the buggiest/worst optimized games, last one I can think of that was all right was Black Flag, mostly because they didn't change the engine and just changed the story line/map.
  • uibo - Friday, May 10, 2019 - link

    At what voltage did you run the 2600k?
  • abufrejoval - Friday, May 10, 2019 - link

    I owned pretty much every iteration of Intel and AMD since the 80286. I pushed them all on relatives and friends to make space for the next iteration.

    But everything since Sandy Bridge stuck around, both because there was no reason to move them out and I had kids to serve. Mine was a 2600 no-K, because I actually wanted to test VT-d and for that you needed to use a Q-chipset and -K was not supported.

    Still drives the gaming rig of one of my sons, while another has the Ivy Bridge (K this time but not delivering beyond 4 GHz). Got Haswell Xeons, 4 and 18 core, a Broadwell as Xeon-D 8 Core, Skylake in notebooks and Kaby Lakes i7-7700K in workstations and an i7-7700T in a pfSense.

    Those newer i7s were really just replacing AMDs and Core-2 systems being phased out over time, not because I was hoping for extra performance: AT made it very clear for years, that that simply won’t happen anymore with silicon physics.

    What I really wanted from Intel, more cores instead of a useless iGPU, more PCIe lanes, more memory channels I eventually got all from the e5-2696v3 I scored for less than $700 on eBay.

    Zen simply came a little too late, a couple of Phenom II x4-6 and three generations of APUs taught me not to expect great performance nor efficiency from AMD, but at least they were budget and had become reliable (unlike the K2-K3+s).

    With the family all settled and plenty of systems in all sizes and shapes the only reason to buy CPU any time soon would be to replace failed parts. And fail they just don’t, at least not the CPUs.

    And then I must have 100GB or so in DDR3, which I really don't buy again as DDR4 or 5. DDR3-2400 is really just fine with Kaby Lakes.

    I overclocked a bit here and there, mostly out of curiosity. But I got bitten far to often with reliability issues, when I was actually working on the machines and not playing around, so I keep them very close to stock for years now: And then it’s simply not worth the trouble, because the GPU/SSD/RAM is far more important or nothing will help anyway (Windows updates…).

    Nice write-up, Ian, much appreciated and not just because it confirms my own impressions.
  • WasHopingForAnHonestReview - Friday, May 10, 2019 - link

    Nice reply. Thanks. My 2600k is just cranking along as my darknet browsing machine
  • RSAUser - Saturday, May 11, 2019 - link

    The Zen chips actually have pretty good efficiency, I was expecting way worse before it came out since AMD hadn't been competitive in years. Zen 2 will be quite interesting, mostly due to the node shrinkage hopefully bringing way lower power envelopes and maybe cheaper CPUs, since we all need that saving for the mess that the GPU market has become.
  • Targon - Tuesday, May 14, 2019 - link

    Don't discount the significant IPC improvements that are expected from the third generation Ryzen processors(not the APUs which are Zen+ based from what I have read).
  • evilspoons - Friday, May 10, 2019 - link

    Still have a 2600k at 4.6 GHz with proper turbo support (slows down when idle). Went from GTX 680s in SLI to a single GTX 1080 and it plays most games just fine.

    That being said I'd love to throw in a Ryzen 7 2700X but only if one of you pays for it... 😁
  • rocky12345 - Friday, May 10, 2019 - link

    Nice flash back review thank you. I am still on a i7 2600K@5.1GHz with 32GB DDR3@2400MHz and very tight timings. It took a while to dial in the memory since Sandy does not really support this speed gracefully like it's newer brothers & sisters do. I have 2 Samsung 512GB SSD drives in raid zero so plenty fast for windows drive and some games installed as well as 2 4TB 7200RPM hard drives.

    I think some of the issues you were having with the OC 4.7GHz was probably do to either memory not 100% stable or the CPU may have just been at the edge of stable because it probably wanted just a tad bit more voltage. on my system I had random problems when it was new due to memory timings and finding just the right voltage for the CPU. After getting all of that dialed in my system is pretty much 100% stable with 5.1GHz and DDR3@2400MHz and has been running this way since 2011.

    So going from these charts for the gaming results & mine at 5.1GHz would place my system faster than the i7 7700K stock and a slightly over clocked one as well. Though I am 100% sure a i7 7700K fully overclocked would get better FPS since their IPC is like what 10%-12% better than a Sandy clock for clock and then if you throw in AVX2 My Sandy would get hammered.

    I am going to be upgrading my system this summer not because I feel my system is slow but more because I know because of it's age that something could fail such as main board or CPU and it would be costly to try to replace either of those so time for the big upgrade soon. I probably will move this system to do secondary duties and have it as a back up gaming system or there for my friends to use when we get to together for a gaming session. I have not fully decided which way to go but am leaning towards maybe AMD Ryzen with Zen 2 and at least 8/16 CPU and maybe a 12/24 CPU if they release more than 8 cores on the main stream desktops.
  • isthisavailable - Friday, May 10, 2019 - link

    Still running a i5 3450. Runs fine and maintains 60 FPS for 95% of the time.

Log in

Don't have an account? Sign up now