AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

The Seagate BarraCuda's average data rate on the Heavy test is lower than normal for mainstream TLC SATA drives. The Plextor M8V performs similarly, suggesting that the Toshiba 3D TLC NAND is a more important contributor to this poor performance than the aging Phison S10 controller that the BarraCuda uses. Overall performance from the BarraCuda doesn't suffer much when the test is run on a full drive, but that's also generally true of current-generation mainstream drives.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latency scores from the BarraCuda are a bit on the high side, but the gap between the BarraCuda and the fastest SATA drives is less than a factor of two. More importantly, the BarraCuda is not a severe outlier even for the full-drive test run, and it does not appear that the BarraCuda suffers from any severe stuttering even under intense workloads.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

The average read and write latencies for the BarraCuda aren't vastly slower than other mainstream drives, but the BarraCuda does rank near last place among its primary competitors, with write latency being a bit more of a problem than read latency.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

The 99th percentile read latency from the BarraCuda is only slightly worse than other mainstream TLC drives, and fortunately much better than the Plextor M8V's score. The BarraCuda's 99th percentile write latency is worse off, with more than twice the latency of its primary competition.

ATSB - Heavy (Power)

The Seagate BarraCuda is more or less tied with the planar TLC-based OCZ Trion 150 for worse overall energy efficiency on the Heavy test, though the DRAMless Mushkin Source is so slow on the full-drive test run that its energy usage outstrips everything else.

AnandTech Storage Bench - The Destroyer AnandTech Storage Bench - Light
Comments Locked

39 Comments

View All Comments

  • seamonkey79 - Friday, December 7, 2018 - link

    The caddy would adapt an m.2 to a full 2.5" SATA socket, so you would have an m.2 in a chassis adapting it to 2.5" & classic SATA.

    That being said, I can't see that doing anything but increasing costs, though having one primary line to manufacture m.2 and the little bit of work needed to adapt an m.2 SATA drive to 2.5", it *could* see some benefit to the manufacturer.
  • Death666Angel - Friday, December 7, 2018 - link

    Huh? M.2 SATA doesn't overheat, that's M.2 NVME/PCIe (which is a bit more difficult to adapt to 2.5" SATA, so I don't care as much). 2.5" SATA drives already have tiny PCBs. They are already bottlenecked by the protocol. With them being M.2 in a 2.5" caddy, they can serve double purpose. I just bought an M.2 drive and a caddy for my Fujitsu T904 laptop, which still has only a 2.5" slot. But I know when that laptop is gone, I'm not gonna need a 2.5" drive. That M.2 drive can be converted into all kinds of useful devices, small desktops, laptops, USB thumb drive. It'd cost them a couple dozens of cents more to manufacture, would it'd be soo much more useful. :D Eventually, more people will use M.2 SATA than 2.5". At least those who buy standalone drives.
  • CheapSushi - Saturday, December 8, 2018 - link

    Dragonstongue I don't think you really know what the OP is talking about, just how tiny the PCB seems to be on newer 2.5" SSDs, thus just being a whole lot of waste of space anyway and/or you don't realize adapters already exist and/or don't realize M.2 is just a formfactor and can be NVMe/PCIe or AHCI/SATA. There's always someone who confidently posts a "neg" at a suggestion without even knowing hardware much in the first place.
  • dgingeri - Friday, December 7, 2018 - link

    When I was a systems admin for a server software test lab, we received a set (108) of 3TB Seagate Constellation ES.2 SAS drives for a new prototype appliance that would eventually become the DXi6900 series. I was pretty excited to see the new hardware come in, so I got things set up within a day.

    The test team wasn't ready to test for another week. In that week, we had 12 of those drives go bad. By two months into the project, every single Seagate drive had gone bad. (These are their enterprise level drives, which are supposed to have better reliability.) We ended up requesting a different brand drive from NetApp (the maker of the storage portion of the DXi6900) because of these problems. We replaced them with HGST 4TB drives, and didn't have a single one fail up to the point when I left over two years later.

    In the years leading up to that, I had bought several Seagate drives, including 4 1TB drives, 2 2TB drives, and one 3TB drive, and had the drive fail within warranty in EVERY SINGLE CASE. That was specifically why I quit buying them, and the 3TB drive is the last Seagate drive I am ever going to buy intentionally.

    This just might be a decent crive, and if Seagate were to put a concerted effort into improving their reliability, they might be something I'd consider. However, as things stand, Seagate and Toshiba are on my NEVER BUY list, along side Biostar, ECS, and Gigabyte.
  • CheapSushi - Saturday, December 8, 2018 - link

    What does this have to do with SSDs at all? Seriously? This is just some overreaching rant saying that one specific type of product means that ALL their products are a problem. Especially about spinning rust several years old; even BackBlaze doesn't use those. Have you even bothered to look into reliability statistics/information on even consumer TLC drives? It's so odd to see people who claim to be in tech but are so antiquated in their knowledge.
  • gglaw - Sunday, December 9, 2018 - link

    Quite a humorous post from someone with a supposed heavy tech/admin background but so short-sighted on the big picture. He lists a bad experience from a completely unrelated product line likely not even sharing manufacturing or R&D ties in any way making him ban products from some of the largest tech companies in the world with for the most part tremendous track records. Even if it is in "principle" for how the company leaders model their QC, all the executives making these decisions at the time of the archaic hard drive problems are likely working with other companies by now (pretty good chance for one of his "new" favorite companies). Similar to the comments on some of Samsung's early SSD fiascos banning all Samsung products "for life." And of course shortly after their fiascos, they quickly became essentially the world's benchmark for performance and reliability in this same product line lol.
  • Donkey2008 - Thursday, December 13, 2018 - link

    108 enterprise-class hard drives failed in 2 months?

    [Insert Doubt meme]
  • sarahkevin - Friday, December 7, 2018 - link

    thanks for sharing I really need this for my office.
  • PeachNCream - Friday, December 7, 2018 - link

    I think I'd probably opt for a Crucial MX500 over a Seagate SSD. Seagate's reputation and my experiences with their mechanical drives make me reluctant about giving them yet another chance.
  • Fujikoma - Friday, December 21, 2018 - link

    I feel the same way about Quantum SCSI drives. Not that Seagate rates much higher...

Log in

Don't have an account? Sign up now