Toshiba's RC100 has arrived as the company's first low-end retail NVMe SSD, and only their second retail NVMe SSD after the aging OCZ RD400. There's nothing else quite like the RC100 in the retail SSD market, but it is part of a broader trend of PCIe and NVMe interfaces being used for cheaper SSDs, and not just the high-end drives that all the first-generation NVMe products aspired to be. Prices on these entry-level NVMe SSDs are now encroaching on the SATA SSDs that still make up the bulk of the market.

BGA SSDs

The RC100 is descended from Toshiba's line of Ball Grid Array (BGA) SSDs for the OEM market. These drives stack the SSD controller and NAND flash memory dies in a single BGA package, making them suitable for small form factor systems that might otherwise use eMMC. Toshiba has also been mounting their BG series SSDs on M.2 2230 cards for OEMs that require upgradable storage devices. The Toshiba RC100 is based on the BG3 SSD, and the primary change in making a retail version is that the M.2 card has been lengthened to 42mm because relatively few existing systems support 30mm M.2 SSDs. This is still quite a bit shorter than the usual 80mm card length used by most consumer M.2 SSDs.

Toshiba's first NVMe BGA SSD was the BG1 introduced in 2015. It used 15nm planar MLC NAND and a 16x20mm package with a PCIe 2 x2 interface. The next generation BG2 was the first client drive to ship with Toshiba's 3D NAND flash memory, but it used their 48-layer design that was never competitive enough for a retail SSD. The BG3 was announced last year as part of Toshiba's transition to their 64-layer 3D NAND that is finally good enough to fully displace their planar NAND.

The small physical size of BGA SSDs limits both the width of their host interface (to two PCIe lanes instead of the four used by high-end NVMe SSDs) and the amount of memory they have. Toshiba's BG1 only offered 128GB and 256GB capacities, and the BG2 and BG3 only go up to 512GB. Toshiba's BG series and the RC100 also don't have a DRAM die in the stack, so these are DRAMless SSDs, and as we'll see can definitely behave like one. Meanwhile thermal throttling is usually not a concern for BGA SSDs because they don't offer the same performance as high-end NVMe SSDs, and consequently only use 2-3W under load instead of the 5-8W used by larger high-end M.2 SSDs.

To mitigate the performance limitations that result from not having a DRAM cache, Toshiba's BG2 introduced support for the NVMe Host Memory Buffer (HMB) feature, and that has been carried over to the BG3 and RC100. HMB is an optional feature that was added in version 1.2 of the NVMe specification, released in 2014. Though the feature was standardized years ago, adoption has been slow because there hasn't been much of a market for low-end NVMe SSDs in either the retail or OEM channels, and Microsoft's NVMe driver didn't implement HMB support until the Windows 10 Anniversary Update in 2016.

Toshiba RC100 Series Specifications Comparison
  120 GB 240 GB 480 GB
Form Factor single-sided M.2 2242 B+M key
Controller Toshiba unnamed
Interface NVMe 1.2.1 PCIe 3.1 x2
DRAM None (HMB supported)
NAND Toshiba 64L BiCS3 3D TLC
Sequential Read 1350 MB/s 1600 MB/s 1600 MB/s
Sequential Write 700 MB/s 1050 MB/s 1100 MB/s
4KB Random Read (QD32) 80k IOPS 130k IOPS 150k IOPS
4KB Random Write (QD32) 95k IOPS 110k IOPS 110k IOPS
Active Power 3.2 W
Idle Power (PCIe L1.2) 5 mW
Endurance 60 TBW
0.45 DWPD
120 TBW
0.45 DWPD
240 TBW
0.45 DWPD
Warranty 3 years
MSRP $59.99 (50¢/GB) $79.99 (33¢/GB) $154.99 (32¢/GB)

The Toshiba RC100 is available in capacities from 120GB to 480GB, essentially the same as the BG3 but with more spare area reserved to allow for slightly higher performance than the BG3. Sequential transfer speeds are rated to be several times faster than a SATA drive, while random access performance is only a bit higher than SATA drives—the flash itself is more of a bottleneck for random IO than the host interface, especially on a DRAMless SSD. The RC100 comes with a three year warranty and its write endurance rating is about 0.45 drive writes per day (DWPD) for that time span, so it's a bit behind the mainstream and high-end consumer drives that are usually rated for 0.3 DWPD over a five year span.

The active power rating of 3.2W is much lower than most of the NVMe SSDs we've tested, and is more in line with SATA SSDs. Idle power is rated at 5 mW, but this is only on platforms with properly working PCIe power management, which doesn't include most desktops. The lack of DRAM and the narrower PCIe link both help keep power consumption low, but the performance impact of those limitations may prevent the overall efficiency from breaking out of the general pattern of NVMe SSDs being less efficient than SATA SSDs.

Toshiba's current retail SSDs: RD400, RC100, TR200

The RC100 uses the single-sided 22x42mm M.2 card form factor with notches in both the B and M positions because it only uses two PCIe lanes instead of four. This means it's mechanically compatible with M.2 slots that may only provide SATA signals. On the card itself, we find a little bit of power regulation circuitry to provide 1.2V and 1.8V from the 3.3V supply, the BGA SSD itself in a 16x20mm package, and enough empty space for the card to reach the first mounting hole on most motherboards.

The Toshiba RC100 essentially has no direct competition in the retail SSD market: M.2 2242 PCIe SSDs have been almost impossible to find until now, and even M.2 SATA SSDs in this form factor are rare. But systems that require these  shorter M.2 cards instead of the more common 80mm length are also rare. The closest competitors to the RC100 are other recent low-end NVMe SSDs based on either the Phison E8 controller or Silicon Motion SM2263, or their respective DRAMless variants (E8T and SM2263XT) that also use the NVMe HMB feature. We've reviewed the MyDigitalSSD SBX with the Phison E8 controller and have several more reviews on the way for this product segment.

With this review, we are finally switching entirely to test results gathered on a system with Meltdown and Spectre patches, current as of May 2018. We have not yet re-tested every drive in our sample collection, so the comparison results in this review don't always show every relevant drive.

AnandTech 2018 Consumer SSD Testbed
CPU Intel Xeon E3 1240 v5
Motherboard ASRock Fatal1ty E3V5 Performance Gaming/OC
Chipset Intel C232
Memory 4x 8GB G.SKILL Ripjaws DDR4-2400 CL15
Graphics AMD Radeon HD 5450, 1920x1200@60Hz
Software Windows 10 x64, version 1709
Linux kernel version 4.14, fio version 3.6
Spectre/Meltdown microcode and OS patches current as of May 2018
Exploring The Host Memory Buffer Feature
POST A COMMENT

62 Comments

View All Comments

  • Mikewind Dale - Thursday, June 14, 2018 - link

    Interesting review. Thanks.

    I'm hoping that smaller, 11" and 13" laptops will start offering M.2 2242 instead of eMMC. I've been wary of purchasing a smaller laptop because I'm afraid that if the NAND ever reaches its lifespan, the laptop will be dead, with no way to replace the storage. An M.2 2242 would solve that problem.
    Reply
  • PeachNCream - Thursday, June 14, 2018 - link

    Boot options in the BIOS may allow you to select USB or SD as an option in the event that a modern eMMC system suffers from a soldered on drive failure. In that case, it's still possible to boot from an OS and use the computer. In that case, I'd go for some sort of lightweight Linux OS for performance reasons, but even a full distro works okay on USB 3.0 and up. SD is a slower option, but you may not want your OS drive to protrude from the side of the computer. Admittedly, that's a sort of cumbersome solution to keeping a low-budget PC alive when replacement costs aren't usually that high. Reply
  • peevee - Thursday, June 14, 2018 - link

    "but this is only on platforms with properly working PCIe power management, which doesn't include most desktops"

    Billy, could you please elaborate on this?
    Reply
  • artifex - Thursday, June 14, 2018 - link

    Yeah, I'd also like to hear more about this. Reply
  • Billy Tallis - Thursday, June 14, 2018 - link

    I've never encountered a desktop motherboard that had PCIe ASPM on by default, so at most it's a feature for power users and OEMs that actually care about power management. I've seen numerous motherboards that didn't even have the option of enabling PCIe ASPM, but the trend from more recent products seems to be toward exposing the necessary controls. Among boards that do let you fully enable ASPM, it's still possible for using it to expose bugs with peripherals that breaks things—sometimes the peripheral in question is a SSD. The only way I'm able to get low-power idle measurements out of PCIe SSDs on the current testbed is to tell Linux to ignore what the motherboard firmware says and force PCIe ASPM on, but this doesn't work for everything. Without some pretty sensitive power measurement equipment, it's almost impossible for an ordinary desktop user to know if their PCIe SSD is actually achieving the <10mW idle power that most drives advertise. Reply
  • peevee - Thursday, June 14, 2018 - link

    So by "properly working" you mean "on by default in BIOS"? Or there are actual implementation bugs in some Intel or AMD CPUs or chipsets? Reply
  • Billy Tallis - Thursday, June 14, 2018 - link

    Implementation bugs seem to be primarily a problem with peripheral devices (including peripherals integrated on the motherboard), which is why motherboard manufacturers are often justified in having ASPM off by default or entirely unavailable. Reply
  • AdditionalPylons - Thursday, June 14, 2018 - link

    That's very interesting. And thanks Billy for a nice review! I too appreciate you doing something different. There will unfortunately always be someone angry on the Internet. Reply
  • Kwarkon - Friday, June 15, 2018 - link

    L1.2 is a special PCIe link state that requires hardware CLREQ signal. When L1.2 is active all communication on PCIe is down thus both host and NVME device do not have to listen for data.
    Desktops don't have this signal ( it is grounded), so even if you tell the SSD (NVME admin commands) that L1.2 support is enabled it will still not be able to negotiate it.

    In most cases m.2 NVME require certain PCIe link state to get lowest power for their Power State.
    The PS x are just states that if all conditions are met than the SSD will get its power down to somewhere around stated value.

    You can always check tech specs of the NVME. If in fact low power is supported than the lowest power will be stated as "deep sleep L1.2 " or similar.
    Reply
  • Death666Angel - Saturday, June 16, 2018 - link

    Prices in Germany do not line up one bit with the last chart. :D The HP EX920 1TB is 335€ and the ADATA SX8200 960GB is 290€. The SBX just has a weird amazon.de reseller who sells the 512GB version for 200€. The 970 Evo 1TB is 330€ and the Intel 760p 1TB is 352€. And for completeness, the WD Black 1TB is 365€. Even when accounting for exchange rates and VAT, the relative prices are nowhere near the US ones. :) Reply

Log in

Don't have an account? Sign up now