Sequential Read Performance

Our first test of sequential read performance uses short bursts of 128MB, issued as 128kB operations with no queuing. The test averages performance across eight bursts for a total of 1GB of data transferred from a drive containing 16GB of data. Between each burst the drive is given enough idle time to keep the overall duty cycle at 20%.

Burst 128kB Sequential Read (Queue Depth 1)

The burst sequential read performance of the Toshiba RC100 is faster than any SATA drive can manage, and is only slightly slower than the MyDigitalSSD SBX. The Host Memory Buffer feature has no significant impact here.

Our test of sustained sequential reads uses queue depths from 1 to 32, with the performance and power scores computed as the average of QD1, QD2 and QD4. Each queue depth is tested for up to one minute or 32GB transferred, from a drive containing 64GB of data.

Sustained 128kB Sequential Read

On the longer sequential read test, the RC100 places slightly ahead of other low-end NVMe drives, but there's still a pretty large gap separating it from the high-end drives that can deliver multiple GB/s at low queue depths.

Sustained 128kB Sequential Read (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

Power efficiency from the Toshiba RC100 is decent by NVMe standards, but not record setting. Total power draw approaches 2W for the 480GB model, which is still quite low for NVMe drives.

HMB appears to have a moderate impact on sequential read performance for the 480GB RC100 at some queue depths. Both capacities hit maximum performance when the queue depth is at least 8.

Sequential Write Performance

Our test of sequential write burst performance is structured identically to the sequential read burst performance test save for the direction of the data transfer. Each burst writes 128MB as 128kB operations issued at QD1, for a total of 1GB of data written to a drive containing 16GB of data.

Burst 128kB Sequential Write (Queue Depth 1)

The burst sequential write performance of the Toshiba RC100 is good for a low-end NVMe drive (or an older high-end drive), but is far below the current high-end drives.

Our test of sustained sequential writes is structured identically to our sustained sequential read test, save for the direction of the data transfers. Queue depths range from 1 to 32 and each queue depth is tested for up to one minute or 32GB, followed by up to one minute of idle time for the drive to cool off and perform garbage collection. The test is confined to a 64GB span of the drive.

Sustained 128kB Sequential Write

On the longer sequential write test, the RC100 performs quite well with HMB on—it slightly outperforms the 250GB Samsung 960 EVO, but can't keep pace with the newer 970 EVO. Even without HMB, the RC100 is one of the faster low-end NVMe drives for sequential writes, but having that extra buffer helps a lot.

Sustained 128kB Sequential Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The Toshiba RC100 finally manages to score a power efficiency win: it just barely cracks 2W during this test and performance is better than most NVMe drives that pull 4W on this test.

he sequential write speed of the 480GB RC100 plateaus at 1GB/s at a queue depth of 2 or higher, but there was a drop in performance at the end of the test that may have been the SLC cache finally running out. The performance from the 240GB takes a bit longer to reach full speed, and without HMB it is both slower and less consistent.

Random Performance Mixed Read/Write Performance
Comments Locked

62 Comments

View All Comments

  • PeachNCream - Thursday, June 14, 2018 - link

    I care. I like seeing what's happening in the rest of the market outside of the highest end hardware since I am more likely to allocate less money to a computer than is required to get top performing parts. Why waste the money on something as unimportant as a computer component when there's a retirement account and a comfortable post-work life to enjoy as soon as humanly possible? Priorities kid, you've got to figure out what matters most in life. Protip: It's not computer parts.
  • chrnochime - Thursday, June 14, 2018 - link

    You!= everyone. So don't ask such silly question as "did anyone care" because of course there are ppl out there that care.
  • smilingcrow - Thursday, June 14, 2018 - link

    970 Pro is mainly for show-offs. If you actually need high end performance there are faster and more cost effective solutions.
  • mr_tawan - Friday, June 15, 2018 - link

    It's probably down the pipe. And if it's not, then you can buy them a review unit.
  • bananaforscale - Monday, July 9, 2018 - link

    Like it or not, low end sells much more than high. Not that a low-end NVMe drive is slow by typical standards.
  • u.of.ipod - Thursday, June 14, 2018 - link

    Billy nice write-up, good to see something a little different. I've read some reviews and am wondering why NVMe is really taking off for lower end drives? From what I can tell even if you compare top of the line NVMe drives against your average SATA SSD, the real world differences are pretty slim for the majority of use cases. Why try to shove NVMe into the low-end market? Is SATA going away? Are many new M.2 slots not compatible with both SATA and NVMe?

    I've really only used SATA M.2 drives thus far and have been happy with the results.
  • MajGenRelativity - Thursday, June 14, 2018 - link

    I'm not sure why, but it could be about standardizing on NVMe. If everything supports NVMe, there don't need to be as many SATA ports, which saves companies some money
  • Midwayman - Thursday, June 14, 2018 - link

    Halo effect and marketing? Is there really any reason a NVMe drive needs to be more expensive? So long as most computers are supporting it now you might as well standardize new drives on the newer interface.
  • bug77 - Thursday, June 14, 2018 - link

    On top of that, NVMe comes with higher power draw. Because PCIe vs SATA.
  • PeachNCream - Thursday, June 14, 2018 - link

    That can be fixed with technological development. For now, SATA is more power-efficient, but as NVMe becomes more popular, market forces will create a demand for higher efficiencies and the problem will be soon enough.

Log in

Don't have an account? Sign up now