Conclusion & Thoughts

The Cortex A76 presents itself a solid generational improvement for Arm. We’ve been waiting on a larger CPU microarchitecture for several years now, and while the A76 isn’t quite a performance monster to compete with Apple’s cores, it shows how important it is to have a balanced microarchitecture. This year all eyes were on Samsung and the M3 core, and unfortunately the performance increase came at a great cost of power and efficiency which ended up making the end-product rather uncompetitive. The A76 drives performance up but on every step of the way it still deeply focused on power efficiency which means we’ll get to see the best of both worlds in end products.

In general Arm promises a 35% performance improvement which is a significant generational uplift. Together with the fact that the A76 is targeted to be employed in 7nm designs is also a boost to the projected product.

I’m having some reservations in terms of the performance targets and if vendors will indeed release the SoC with quad-core clock rates of up to 3GHz – based on what I’ve heard from vendors that seems like a rather very optimistic target. Even then, a reduced clock frequency still brings significant benefits, and it’s especially on the efficiency side where Arm should be lauded for continuing to place great focus on.

Whether my projections are correct or not is something we’ll have to see in actual products, but fact is that we *will* see significant efficiency benefits in the next generation of SoCs which should bring both an notable performance improvement as well as battery life improvement to the user. Arm’s focus here on the user experience seems to be exemplary and I hope vendors will be able to implement the core based on Arm’s guidance and reach the targeted metrics.

The Cortex A76 is said to have already come back in working silicon at two partners and we’ll very likely see it shipping in commercial products by the end of the year. I won’t be beating around the bush here as Huawei and HiSilicon’s product cycle schedule makes it obvious that they’re likely one of the launch partners for the product. Qualcomm has also doubled down on using Arm cores in the mobile space so we should also be seeing the next generation Snapdragon SoCs employ the A76. Among the big players, it’s Samsung LSI which is going to have a tough time – the A76 doesn’t seem to greatly outperform the M3, so at least in theory, the M4’s focus will need to be solely on power efficiency. Then again Arm is very open about their design goals; half the area and half the power at similar performance is something that’s going to be hard to compete against.

The Cortex A76 is said to be the baseline microarchitecture on which Arm will iterate over the next 2 generations at least. Arm has been able to execute their yearly beat roadmap on time for 5 generations now and with yearly 20-25% CAGR it’s going to be a very interesting next couple of years as the mobile space is very quickly approaching the performance of desktop CPUs.

Cortex A76 - Performance & Power Projections
Comments Locked

123 Comments

View All Comments

  • vladx - Wednesday, June 6, 2018 - link

    @porcupineLTD: You clearly don't understand the meaning of "sustained performance".
  • Wardrive86 - Thursday, May 31, 2018 - link

    Dual 128 bit NEON simds, with an FMA is this the first "theorectical" 16 GFlop/clock ARM CPU?
  • Wardrive86 - Thursday, May 31, 2018 - link

    *Theoretical obviously
  • StormyParis - Friday, June 1, 2018 - link

    Tell me more about that theorectal stuff ;-p
  • Wardrive86 - Friday, June 1, 2018 - link

    Well beyond the scope of this article ;)
  • Wardrive86 - Thursday, June 28, 2018 - link

    NEON is a 128 bit SIMD structured into 2 x 64bit execution ALUs(Pipelines).Read like they have doubled the width of the ALUs (2 x 128bit)
  • zodiacfml - Friday, June 1, 2018 - link

    We might see higher boosts/TDPs soon. there is a significant market for gaming branded smartphones. I believe this will be larger than expected as this finally allows differentiation in a saturated market.

    I like this niche as it it gives the designers more freedom for thicker phones.
  • jjj - Friday, June 1, 2018 - link

    Would be better if they would just tell us the area, right now it sounds like the core+L1 might be towards 2mm2 on 7nm so rather massive.
  • jjj - Friday, June 1, 2018 - link

    Seems to be a large increase in area (based on how the very little shared) so not quite easy to keep power down.
    Then, what kind of clocks and TDP do they target, does power scale well above 3GHz? Or maybe that was the plan and they did not quite get there.
    Also, did they mention some other core targeted at server?
  • jjj - Friday, June 1, 2018 - link

    "Arm also had a slide demonstrating absolute peak performance at frequencies of 3.3GHz. The important thing to note here was that this scenario exceeded 5W and the performance would be reduced to get under that TDP target"

    This might be the wrong interpretation of the slide, as x1.9 at 5W includes the little cores so the transition from A53 to A55.

Log in

Don't have an account? Sign up now