Mixed Random Performance

Our test of mixed random reads and writes covers mixes varying from pure reads to pure writes at 10% increments. Each mix is tested for up to 1 minute or 32GB of data transferred. The test is conducted with a queue depth of 4, and is limited to a 64GB span of the drive. In between each mix, the drive is given idle time of up to one minute so that the overall duty cycle is 50%.

Mixed 4kB Random Read/Write

The mixed random I/O performance of the Crucial MX500 is slower overall than the MX300 and most of the current-generation competition. Even the faster 1TB model is a bit below average among half-TB drives.

Mixed 4kB Random Read/Write (Power Efficiency)

The power efficiency of the MX500 on the mixed random I/O test has also regressed a bit, but it isn't much below par—only Samsung's drives really stand out as quite efficient on this test.

The Crucial MX500's performance is a bit unsteady during the first half of this test, before climbing through the second half as the opportunities for combining and caching writes increase. Most of the competition shows much steadier performance increases across the entire test, though not always with such a pronounced spike at the end.

Mixed Sequential Performance

Our test of mixed sequential reads and writes differs from the mixed random I/O test by performing 128kB sequential accesses rather than 4kB accesses at random locations, and the sequential test is conducted at queue depth 1. The range of mixes tested is the same, and the timing and limits on data transfers are also the same as above.

Mixed 128kB Sequential Read/Write

The mixed sequential I/O performance of the MX500 is a slight improvement over the MX300, but it is still a bit slower than the 850 EVO or Intel 545s, and the MLC drives have a clear advantage.

Mixed 128kB Sequential Read/Write (Power Efficiency)

While performance improved slightly, the Crucial MX500's power efficiency on the mixed sequential I/O test was a bit worse than the MX300. Aside from the big efficiency jump from the Samsung 860 PRO, the differences between the MX500 and the competition are small, but there's room for improvement.

The performance curves for the two capacities of the Crucial MX500 show the same basic shape, with the drives performing the worst on mixes of about 60% reads. Samsung's drives bottom out in the second half of the test with mixes of around 30% reads, and the Intel 545s doesn't have any clear weak spot but its performance wavers slightly throughout the mixed sequential I/O test.

Sequential Performance Power Management
Comments Locked

25 Comments

View All Comments

  • jordanclock - Friday, February 2, 2018 - link

    Generally, any good SATA SSD is going offer much the same performance as any other model. The gains when going from the second (or even fifth) best SSD on SATA to the absolute best are tiny. Plus, given the capacity you would want for a console, I think going for a 'mediocre' SSD will offer all the performance you need without spending twice as much for less than one second load time differences.
  • leexgx - Tuesday, February 20, 2018 - link

    this is true once you have a SSD (any) in a console your purely limited by the CPU speed and ram in the PS4 or xbox it self (some youtubers have tested it) even to the point the SSHD from seagate and toshiba after the second load is nearly the same as a SSD (but it has to have read the data before so if you load the same game or save twice for it work well witch mite happen if you die a lot and fall back to a checkpoint save) if you switch between games SSHDs can at times offer not as much benerfit

    still can't beat SSDs for consistency as it always be the same speed
  • tamalero - Friday, February 2, 2018 - link

    Those prices feel really nice!
  • Hurr Durr - Sunday, February 4, 2018 - link

    It's not nice until we hit around 10 cents for the gigabyte.
  • zirk65 - Friday, February 2, 2018 - link

    Looks similar to the MX200, but with bigger pipes and better thermals.

    MX200 = MLC NAND / Marvel Controller
    MX500 = TLC NAND / Silicon Motion Controller

    Yet I wonder much is different between the controller uArch these days, outside of specific I/O and power functions.
  • mode_13h - Friday, February 2, 2018 - link

    Last I checked, Crucial's MX-series SSDs featured end-to-end data protection. Does Samsung offer anything like that, in their consumer drives?
  • letmepicyou - Friday, February 2, 2018 - link

    Say Mr. Tallis, I'm sure I'm not alone when I ask this (feel free to chime in, guys) but there are those of us out here who want the greater capacity of a 1tb drive whilst not wanting to fork over 1tb drive prices. I can RAID 0 a pair of ~500gb drives and get better performance than a single 1tb drive, while spending $60-$120 less.
    What I'm saying is, I would love to see how your arsenal of ~500 gb drives perform in RAID. I have a feeling others would like to see the same information.
  • Billy Tallis - Friday, February 2, 2018 - link

    You can't get a pair of 500GB drives for $60 less than the price of a 1TB drive from the same product line, unless you're looking at an unusually good sale on the 500GB drives and not looking for the best price on a 1TB drive. Every 1TB SATA drive I price checked this week was cheaper per GB than its half-TB counterpart.

    As for RAID testing, my collection of drives almost never includes more than one of each. At the moment I'm finishing up a NVMe RAID review using a set of drives that was loaned by a vendor specifically for this review. Between the disappointing results I'm getting from that project and the prices I'm seeing that don't make SATA RAID economical either, it's not a priority for me to test SATA RAID.
  • Wardrop - Saturday, February 3, 2018 - link

    Is that a software raid or hardware raid you used for your NVMe raid review. I'm guessing software as I'm not even sure any NVMe raid solutions exist. In that case, I imagine we're back to needing dedicated RAID controller to deal with the order of magnitude increase in drive performance compared to HDD's, and then obviously you're left questioning who needs double the increase in sequential performance when a single drive is usually more than fast enough for any sequential workload.
  • peevee - Monday, February 5, 2018 - link

    Check m.2 PCIe/NVMe 1TB and 2TB prices.
    But you'll need an MB with 2 M.2 slots with 4x PCIe connected to CPU, are those even available? Otherwise latencies will dominate the performance (like for M.2 which only provide SATA, either slots or drives).

Log in

Don't have an account? Sign up now