Power Management

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks.

We report two idle power measurements. Active idle is representative of a typical desktop, where none of the advanced PCIe link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. The idle power consumption metric is measured with PCIe Active State Power Management L1.2 state enabled and NVMe APST enabled.

Active Idle Power Consumption (No LPM)Idle Power Consumption

The active idle power consumption of the Crucial BX300 is the same as for the BX200. Both are a bit on the high side, but there are Silicon Motion drives with both higher and lower active idle draws. With SATA link power management enabled, the BX300's idle power draw is better than average, but 20mW worse than what the BX200 and Intel 545s manage with older and newer Silicon Motion controllers.

Idle Wake-Up Latency

The BX200 had a serious problem with idle wake-up latency of over 10ms, which the BX300 has fixed. The BX300 wakes up quickly, though the drives with the Phison S10 controller are still the quickest by far.

Mixed Read/Write Performance Conclusion
Comments Locked

90 Comments

View All Comments

  • lilmoe - Tuesday, August 29, 2017 - link

    Question. This is provably unlikely, but is binning layers possible?
  • lilmoe - Tuesday, August 29, 2017 - link

    Probably*
  • Billy Tallis - Wednesday, September 6, 2017 - link

    3D NAND is not really built one layer at a time. The first stage of building the memory array is to make a tall stack of alternating materials, and then vertical strings of memory cells are formed through that stack by etching deep but narrow holes and filling them with the remaining components. That high aspect ratio etching step is one of the main limiting factors in scaling layer count. If you push the layer count too far, you end up with memory cells in layers near the top of the stack having significantly different properties from the ones near the bottom of the stack.

    It's relatively unlikely to have an individual layer somewhere in the middle of the stack be dead/defective across that entire layer. It's more common to see an entire vertical column fail, which involves a much smaller number of memory cells.
  • Radio-Zone - Wednesday, August 30, 2017 - link

    Thanks for the information!!!
  • Ej24 - Wednesday, August 30, 2017 - link

    Congratulations Micron you're almost back to where you were 2 years ago in performance with the m550, Mx100 and mx200. I've always been a huge fan of crucial SSD's. Great bang for the buck for MLC drives. But the last year or so it's been hard to keep praising crucial.
  • m16 - Sunday, September 3, 2017 - link

    It's an interesting move, but all in all, due to the shortage, any SATA drive will do for anyone that is looking for a switch to SSD on the desktop, while power might be the top issue for laptops.

    There's the RAM caching on some of their drives which is very good all in all, especially for computers that have AMD CPUs, that can't use Intel's caching technology to speed things up.
  • keta - Wednesday, September 6, 2017 - link

    Over two-and-a-half years ago (January 2015), I bought a 256GB MX100 for $95. That worked out to $0.371/GB, or a little less than what the BX300 is going for today ($0.375).

    I would be willing to pay the same rate if it meant better performance, but using the ATSB Heavy stats in Bench, it seems that my old MX100 outperforms the BX300 in both data rate and latency. Are the 2015 ATSB Heavy stats comparable to the 2017 stats? Is it really the case that SATA SSD price/performance is worse than it was 2.5 years ago?
  • Billy Tallis - Wednesday, September 6, 2017 - link

    The average data rate and latency stats for the ATSB tests should be comparable between the 2015 and 2017 test suites. The workload didn't change, but the OS version and motherboard did. Next month or maybe late this month, I'll pull the MX100 from my gaming machine and put it through the 2017 test suite.
  • keta - Wednesday, September 6, 2017 - link

    Thanks! I'd be super interested in a 'long-view' piece that puts some of the older flagship SSDs (X-25M, Vertex 2, MX100) through the present-day latency/consistency analysis that AT has developed. And maybe throw in that old WD Scorpio as well, not just to see how far we've come from spinning drives, but also to put the differences between SSDs in perspective!
  • Lolimaster - Thursday, August 9, 2018 - link

    And now in Peru you can find the BX300 120GB for $35 xD.

Log in

Don't have an account? Sign up now