Sizing Up Today’s Launch: RX Vega 64 & RX Vega 56

Now that we’ve gone through the architectural details of Vega, let’s size up today’s launch with the Radeon RX Vega 64 and Radeon RX Vega 56. While this isn’t quite a traditional one-two launch since Vega 56 doesn’t come out for another two weeks, it otherwise follows the usual pattern. That means a high-performance, fully-enabled card at the top, with its salvaged, lower-clocked, lower-priced counterpart below it.

AMD Radeon RX Series Specification Comparison
  AMD Radeon RX Vega 64 Liquid AMD Radeon RX Vega 64 AMD Radeon RX Vega 56 AMD Radeon R9 Fury X
Stream Processors 4096
(64 CUs)
4096
(64 CUs)
3584
(56 CUs)
4096
(64 CUs)
Texture Units 256 256 224 256
ROPs 64 64 64 64
Base Clock 1406MHz 1247MHz 1156MHz N/A
Boost Clock 1677MHz 1546MHz 1471MHz 1050MHz
Memory Clock 1.89Gbps HBM2 1.89Gbps HBM2 1.6Gbps HBM2 1Gbps HBM
Memory Bus Width 2048-bit 2048-bit 2048-bit 4096-bit
VRAM 8GB 8GB 8GB 4GB
Transistor Count 12.5B 12.5B 12.5B 8.9B
Board Power 345W 295W 210W 275W
(Typical)
Manufacturing Process GloFo 14nm GloFo 14nm GloFo 14nm TSMC 28nm
Architecture Vega
(GCN 5)
Vega
(GCN 5)
Vega
(GCN 5)
GCN 3
GPU Vega 10 Vega 10 Vega 10 Fiji
Launch Date 08/14/2017 08/14/2017 08/28/2017 06/24/2015
Launch Price $699* $499/599* $399/499* $649

First off of course is the Radeon RX Vega 64. Based on a fully enabled Vega 10 GPU, this card is AMD’s best foot forward on Vega 10 performance. As it lives up to with its name, the Vega 64 ships with all 64 of Vega 10’s CUs enabled, giving the card 4096 SPs and 256 texture units. These CUs are in turn paired with AMD’s now L2 cache-backed ROPs, with a complete set of 64 of them.

In terms of clockspeed then, the Vega 64 can reach clockspeeds significantly higher than AMD’s Polaris cards, never mind the 28nm Fury X. In fact clockspeed is the single greatest resources AMD has for improving performance in existing games relative to Fury X, as while the architecture optimizations we talked about earlier do help performance in specific situations, nothing else has the raw potency and consistency of Vega’s much greater clockspeeds.

To this end the base clock is admittedly a bit low at 1247MHz, however the boost clock is at 1546MHz. As a reminder, AMD is taking a more NVIDIA-like stance with clockspeed advertising, so whereas Fury X’s boost clock was its highest attainable clockspeed (throttling when it couldn’t sustain it), RX Vega’s boost clock is the average clockspeed AMD expects the card to be able to sustain under gaming workloads. The card itself can actually boost even higher than this given a low-powered workload (e.g. something compute-heavy), with both of our sample cards boosting up to 1630MHz.

All told then, relative to its Fury X predecessor, on paper Vega 64 offers 47% higher shader, texture, geometry, and ROP throughput. These numbers don’t factor in Vega’s architecture enhancements, and in practice the actual performance gain will depend on what clockspeeds that the Vega 64 can attain, and conversely how much a given workload benefits from those aforementioned architectural improvements. So as with past architecture launches, the specs are only half of the story and the benchmarks will play the rest.

Paired with the Vega 10 GPU is 8GB of HBM2 memory, in the form of a pair of 4-Hi 4GB stacks. The two stacks are connected to Vega 10 via a 2048-bit wide memory bus running through the silicon interposer, and coupled with HBM2’s improved clockspeeds, gives Vega 10 GPU a lot of memory bandwidth in little space. AMD has clocked the memory at 1.89Gbps, giving the Vega 64 484GB/sec of memory bandwidth. With the original goal for the flagship card being a 2Gbps data rate (for a total of 512GB/sec) this does put Vega 64 at a slight disadvantage versus the previous Fury X. Which means that from an architectural perspective, AMD has to do more with slightly less.

Moving on, for better or worse the Vega 64 is a high-powered card in all senses of the word. AMD’s official board power specification for the card is 295W. Board power is a bit of a new metric for AMD; in previous generations they have published the typical board power of a card, whereas the 295W value here is no longer considered typical. Truthfully I don’t have a full grasp of the difference, but given our data and the fact that this value is higher than the Fury X’s typical board power of 275W, and this seems to function closer to a maximum for AMD. Which means that depending on the scenario a card can draw less than 295W, however as virtually all GPU-bound scenarios are also power-bound scenarios, it’s as good a number as any for a full load power specification.

For AMD, a high board power specification isn’t especially new. Fury X, Fury, and the R9 290X all shipped with high TBPs as well. But it means buyers should set their expectations accordingly for how the card will compare to past cards and the competition in terms of power consumption, and what acoustics might be like on this blower-based card.

Finally, while we’re not reviewing it today, AMD also has the RX Vega 64 Liquid Cooled edition. AMD is wisely not treating this card as the “baseline” performance of the Vega 64, but rather an enhanced enthusiast edition. This card has a boost clock rating of 1677MHz – 131Mhz above the air cooled card – and should perform a bit better than its non-liquid counterpart. However power consumption has more than gone up to match, with a 345W board power rating. This is going to be a low-volume halo part for enthusiasts who want the fastest Vega 64 possible, regardless of what it means for pricing or power consumption, and AMD is treating it accordingly.

Radeon RX Vega 56

Second on deck for today’s review embargo and arguably the focus of AMD’s promotional efforts is the Radeon RX Vega 56. The lower-tier counterpart to the RX Vega 64, the RX Vega 56 is the obligatory cut-down version of the RX Vega family. This features the same Vega 10 GPU as the Vega 64, however as accurately described in the name, only 56 of the 64 CUs are enabled on this card, leaving it with 3584 stream processors and 224 texture units.

Clockspeeds have also been cut down for the Vega 56, leading to the card shipping with a 1156MHz base clock and 1471MHz boost clock. On paper then, it offers 83% of the RX Vega 64’s compute and texturing performance, and 95% of the Vega 64’s ROP and geometry performance. Consequently, how the Vega 56 will perform in games has the potential to swing anywhere between a solid step below AMD’s flagship card, and something that gets a bit too close for comfort.

Meanwhile like its high-tier counterpart, the Vega 56 gets 8GB of HBM2 memory. Like its GPU clockspeed, memory clockspeeds have also been reduced to a less aggressive frequency here, leading to AMD shipping the card with a 1.6Gbps data rate. All told then, this gives the Vega 56 410GB/sec of memory bandwidth to work with, about 85% of Vega 64’s. Given that Vega 56’s compute/shading throughput is also about 85% of Vega 64’s, you can see how this memory configuration is a good match for Vega 56’s GPU configuration.

The upside of pulling back on performance is that AMD has also been able to pull back on power consumption. Vega 56 shaves 85W off of its board power rating, bringing it down to 210W. Which considering that on paper Vega 56 should deliver 85% of the performance of Vega 64, doing so at 71% of the power consumption looks very tantalizing in its own way.

The one catch specific to the Vega 56’s launch however is that it isn’t. Only the Vega 64 is launching today, while the Vega 56 will not be for sale until August 28th, making this a bit of a paper launch.

Rapid Packed Math: Fast FP16 Comes to Consumer Cards Competitive Positioning, Radeon Packs, & Crytocurrency Demand
Comments Locked

213 Comments

View All Comments

  • BrokenCrayons - Monday, August 14, 2017 - link

    The hypothetical APU that contains Zen, Polaris/Vega, and HBM2 would be interesting if AMD can keep the power and heat down. Outside of the many cores Threadripper, Zen doesn't do badly on power versus performance so something like 4-6 CPU cores plus a downclocked and smaller GPU would be good for the industry if the package's TDP ranged from 25-95W for mobile and desktop variants.

    By itself though, Vega is an inelegant and belated response to the 1080. It shares enough in common with Fiji that it strikes me as an inexpensive (to engineer) stopgap that tweaks GCN just enough to keep it going for one more generation. I'm hopeful that AMD will have a better, more efficient design for their next generation GPU. The good news is that with the latest product announcements, AMD will likely avoid bankruptcy and get a bit healthier looking in the near term. Things were looking pretty bad for them until Ryzen's announcement, but we'll need to see a few more quarters of financials that ideally show a profit in order to be certain the company can hang in there. I'm personally willing to go out on a limb and say AMD will be out of the red in Q1 of FY18 even without tweaking the books on a non-GAAP basis. Hopefully, they'll have enough to pay down liabilities and invested in the R&D necessary to stay competitive. With process node shrinks coming far less often these days, there's an several years' long opening for them right now.
  • TheinsanegamerN - Monday, August 14, 2017 - link

    " It shares enough in common with Fiji that it strikes me as an inexpensive (to engineer) stopgap that tweaks GCN just enough to keep it going for one more generation. "

    We thought the same thing about polaris. I think the reality is that AMD cannot afford to do a full up arch, and can only continue to tweak GCN in an attempt to stay relevant.

    They still have not done a Maxwell-Esq redesign of their GPUs streamlining them for consumer use. They continue to put tons of compute in their chips which is great, but it restricts clock rates and pushes power usage sky high.
  • mapesdhs - Monday, August 14, 2017 - link

    I wonder if AMD decided it made more sense to get back into the CPU game first, then focus later on GPUs once the revenue stream was more healthy.
  • Manch - Tuesday, August 15, 2017 - link

    Just like there CPU's it's a jack of all trades design. Cheaper R&D to use one chip for many but you got to live with the trade offs.

    The power requirement doesn't bother me. Maybe after the third party customs coolers, I'll buy one if it's the better deal. I have a ventilated comm closet. All my equipment stays in there, including my PCs. I have outlets on the wall to plug everything else into. Nice and quiet regardless of what I run.
  • Sttm - Monday, August 14, 2017 - link

    That Battlefield 1 Power Consumption with Air, is that actually correct? 459 watts.... WTF AMD.
  • Aldaris - Monday, August 14, 2017 - link

    Buggy driver? Something is totally out of whack there.
  • Ryan Smith - Monday, August 14, 2017 - link

    Yes, that is correct.

    I also ran Crysis 3 on the 2016 GPU testbed. That ended up being 464W at the wall.
  • haukionkannel - Monday, August 14, 2017 - link

    Much better than I expected!
    Nice to see competition Also in GPU highend. I was expecting the Vega to suffer deeply in DX11, but it is actuallu doing very nice in those titles... I am really surpriced!
  • Leyawiin - Monday, August 14, 2017 - link

    A day late and a dollar short (and a power pig at that). Shame. I was hoping for a repeat of Ryzen's success, but they'll sell every one they make to miners so I guess its still a win.
  • Targon - Monday, August 14, 2017 - link

    I would love to see a proper comparison between an AMD Ryzen 7 and an Intel i7-7700k at this point with Vega to see how they compare, rather than testing only on an Intel based system, since the 299X is still somewhat new. All of the Ryzen launch reviews were done on a new platform, and the AMD 370X is mature enough where reviews will be done with a lot more information. Vega is a bit of a question mark in terms of how well it does when you compare between the two platforms. Even how well drivers should have matured in how well the 370X chipset deals with the Geforce 1080 is worth looking at in my opinion.

    I've had the thought, without resources, that NVIDIA drivers may not do as well on an AMD based machine compared to an Intel based machine, simply because of driver issues, but without a reasonably high end video card from AMD, there has been no good way to do a comparison to see if some of the game performance differences between processors could have been caused by NVIDIA drivers as well.

Log in

Don't have an account? Sign up now