Announcement Four: AVX-512 & Favored Core

To complete the set, there are a couple of other points worth discussing. First up is that AVX-512 support coming to Skylake-X. Intel has implemented AVX-512 (or at least a variant of it) in the last generation of Xeon Phi processors, Knights Landing, but this will be the first implementation in a consumer/enterprise core.

Intel hasn’t given many details on AVX-512 yet, regarding whether there is one or two units per CPU, or if it is more granular and is per core. We expect it to be enabled on day one, although I have a suspicion there may be a BIOS flag that needs enabling in order to use it.

As with AVX and AVX2, the goal here is so provide a powerful set of hardware to solve vector calculations. The silicon that does this is dense, so sustained calculations run hot: we’ve seen processors that support AVX and AVX2 offer decreased operating frequencies when these instructions come along, and AVX-512 will be no different. Intel has not clarified at what frequency the AVX-512 instructions will run at, although if each core can support AVX-512 we suspect that the reduced frequency will only effect that core.

With the support of AVX-512, Intel is calling the Core i9-7980X ‘the first TeraFLOP CPU’. I’ve asked details as to how this figure is calculated (software, or theoretical), but it does make a milestone in processor design. We are muddying the waters a bit here though: an AVX unit does vector calculations, as does a GPU. We’re talking about parallel compute processes completed by dedicated hardware – the line between general purpose CPU and anything else is getting blurred.

Favored Core

For Broadwell-E, the last generation of Intel’s HEDT platform, we were introduced to the term ‘Favored Core’, which was given the title of Turbo Boost Max 3.0. The idea here is that each piece of silicon that comes off of the production line is different (which is then binned to match to a SKU), but within a piece of silicon the cores themselves will have different frequency and voltage characteristics. The one core that is determined to be the best is called the ‘Favored Core’, and when Intel’s Windows 10 driver and software were in place, single threaded workloads were moved to this favored core to run faster.

In theory, it was good – a step above the generic Turbo Boost 2.0 and offered an extra 100-200 MHz for single threaded applications. In practice, it was flawed: motherboard manufacturers didn’t support it, or they had it disabled in the BIOS by default. Users had to install the drivers and software as well – without the combination of all of these at work, the favored core feature didn’t work at all.

Intel is changing the feature for Skylake-X, with an upgrade and for ease-of-use. The driver and software are now part of Windows updates, so users will get them automatically (if you don’t want it, you have to disable it manually). With Skylake-X, instead of one core being the favored core, there are two cores in this family. As a result, two apps can be run at the higher frequency, or one app that needs two cores can participate.

Availability

Last but not least, let's talk about availability. Intel will likely announce availability during the keynote at Computex, which is going on at the same time as this news post goes live. The launch date should be sooner rather than later for the LCC parts, although the HCC parts are unknown. But no matter what, I think it's safe to say that by the end of this summer, we should expect a showdown over the best HEDT processor around.

Announcement Three: Skylake-X's New L3 Cache Architecture
Comments Locked

203 Comments

View All Comments

  • n31l - Sunday, June 4, 2017 - link

    not sure about that.. I've just done the 'microcode' unlock of a 2695 v3 (x99 single socket system) even with such an old architecture, with all 14 cores fully stressed @3199, no core goes above 50c, they have plenty or room to move on clock rates 'if' they wanted..

    I think Intel is just trying to find out where 'threadripper' will fit within the market.. worst case.., all they need to do is shift 'families' left bring the E7 to E5 and stop selling E5-16xx (i7 consumer parts) with a Xeon premium (especially now v4's are locked!! How I'll miss E5-1620@4.6 with ECC memory)

    Unfortunately, imho, Intel can only deal with AMD in a half-arsed manor, if they wanted they could kill AMD but then they will be broken up for being a monopoly if they do.. damned if you do, damned if you don't..

    Personally I'd like to see Nvidia and Intel cross-licencing to 'officially' come to an end and for Nvidia to revive the 'Transmeta x86' IP they bought (but weren't allowed to use due to GPU licence agreement) or maybe for Microsoft to extend what's happening with windows on 'ARM' and just let NVidia lose amongst the pigeons.. or crazier still, as I believe Microsoft still has the 'golden' share option from the xbox days.. how about they buy Nvidia and make a custom 'windows CPU' and take google on head first before it's too late.. ;-)
  • theuglyman0war - Thursday, June 8, 2017 - link

    what do u consider a hedt scenario that doesn't leverage moar cores?
    Workstation? A workstation creative that doesn't render interactively? Light baking complex radiosity?
    If I did not scream at progress bars aLL DAY. I would have no reason to upgrade for years now. I do not see that happening in my lifetime and if I keep screaming at progress bars without relief I will eventually commit bloody criminal solutions perhaps even to my poor suffering soul. Considering 90 percent of my progress bars are wrecked everytime I advance advanced cores...
    I wonder what is this hedt market that does not leverage moar cores?
  • 3DVagabond - Monday, June 19, 2017 - link

    Nah. They'll just sell their's for $999.
  • Chaitanya - Tuesday, May 30, 2017 - link

    Intel desperately scrambling for ideas.
  • mschira - Tuesday, May 30, 2017 - link

    $2000?
    Are they kidding? In what world do they live?
    I rather get a dual socket AMD system for the same money. If I would care enough about that many thread performance.

    Thank God AMD got their act back together, Intel has gone completely insane.
    M.
  • nevcairiel - Tuesday, May 30, 2017 - link

    Considering how much the 10-core BDW-E already cost before, $2000 is actually lower then I would have expected.
  • Notmyusualid - Tuesday, May 30, 2017 - link

    @nevcairiel

    Agreed.
  • ddriver - Tuesday, May 30, 2017 - link

    Considering it is actually a xeon they'd sell for 4000$ had there not been the desperate need to save face, 2000$ as expressive as it may be, is quite generous of intel, you know... relative to their standards for generosity...
  • smilingcrow - Tuesday, May 30, 2017 - link

    Broadwell-EP 18 Core parts start at under $2,500 so Skylake-EP or whatever it will be called will likely offer more cores per dollar and that is the comparison to be made.
    Intel can make as many of them as they like so selling them at 'only' $2k to prosumers hardly undermines their business model as it's not as if they will end up in true Workstations/Servers anyway.
    I don't see that much financial upside or downside to Intel for HEDT parts over $1K as that's a small market.
    But AMD are putting downward price pressure on the sub $1K chips which will hurt more.
    Plus the 16 Core AMD part is likely usable in a Workstation/Server with it supporting ECC memory so that is another attack on Intel.
    So I think you have missed the mark in giving much emphasis to these re-positioned HCC chips, the play is elsewhere.
  • theuglyman0war - Thursday, June 8, 2017 - link

    I am hoping the $849 16 core threadripper rumor is true. As awesome as that would be it still comes down to benchmarks. A workstation u will b suffering with for 2 or 3 years because it owns now vs the hassle of upgrading the cheaper solution every year that doesn't quite own. Where that line lie with me usually depends on how impressed I am at the time saved rendering extreme complexity. Or how much those core make my pipeline more interactive/productive. The more AMD forces Intel to cannibalize the XEON line the better. Kind of bitter that AMD wasn't more hedt relevant for a while now. Kind of wonder why they did not spend the bucks on the architecture talent for all these years if that's all it took to jump start things like the current excitement. And I haven't been excited like this in a long time.

Log in

Don't have an account? Sign up now