Benchmarking Performance: CPU Web Tests

One of the issues when running web-based tests is the nature of modern browsers to automatically install updates. This means any sustained period of benchmarking will invariably fall foul of the 'it's updated beyond the state of comparison' rule, especially when browsers will update if you give them half a second to think about it. Despite this, we were able to find a series of commands to create an un-updatable version of Chrome 56 for our 2017 test suite. While this means we might not be on the bleeding edge of the latest browser, it makes the scores between CPUs comparable.

SunSpider 1.0.2 [link]

The oldest web-based benchmark in this portion of our test is SunSpider. This is a very basic javascript algorithm tool, and ends up being more a measure of IPC and latency than anything else, with most high performance CPUs scoring around about the same. The basic test is looped 10 times and the average taken. We run the basic test 4 times.

Web: SunSpider on Chrome 56

Mozilla Kraken 1.1 [link]

Kraken is another Javascript based benchmark, using the same test harness as SunSpider, but focusing on more stringent real-world use cases and libraries, such as audio processing and image filters. Again, the basic test is looped ten times, and we run the basic test four times.

Web: Mozilla Kraken 1.1 on Chrome 56

Google Octane 2.0 [link]

Along with Mozilla, as Google is a major browser developer, having peak JS performance is typically a critical asset when comparing against the other OS developers. In the same way that SunSpider is a very early JS benchmark, and Kraken is a bit newer, Octane aims to be more relevant to real workloads, especially in power constrained devices such as smartphones and tablets.

Web: Google Octane 2.0 on Chrome 56

WebXPRT 2013 and 2015 [link]

While the previous three benchmarks do calculations in the background and represent a score, WebXPRT is designed to be a better interpretation of visual workloads that a professional user might have, such as browser based applications, graphing, image editing, sort/analysis, scientific analysis and financial tools. Web2013 is the older tool, superceded by Web2015, however both still are highly relevant for high-performance web applications today. 

Web: WebXPRT 13 on Chrome 56

Web: WebXPRT 15 on Chrome 56

Benchmarking Performance: CPU Rendering Tests Benchmarking Performance: CPU Encoding Tests
Comments Locked

254 Comments

View All Comments

  • msroadkill612 - Thursday, April 13, 2017 - link

    Its worth noting that amd moboS historically tend to endure many revised cpuS. whereas an intel cpu upgrade for a user is bound to require a new mobo.

    "ryzen 2" will probably simply drop into an am4 mobo.

    Its also interesting that many or all the mobos i have seen are ready to go for an apu - video connects onboard e.g.

    this indicates that raven ridge exists now, for pre-production mobo testing.
  • msroadkill612 - Thursday, April 13, 2017 - link

    I dont believe amd would go to all the trouble of doing zen and vega, and then merge zen with prev gen polaris for the APU.

    it doesnt make sense from several perspectives. amd philosophy, the architecture seen in ryzen - 2 zen core blocks on a ccx simply becomes one core block and one vega gpu on a single ccx.

    it will be a hell of a piece of silicon.
  • Johan Steyn - Friday, April 14, 2017 - link

    Ryzen 9 is not that far fetched. Looking at the server part coming soon, an Ryzen extreme could be happening, especially for workstations. Maybe it might even fit AM4, although unlikely with quad channels. I do not think the current SOC has enough pins. So maybe we might get a Ryzen 9 with plenty of cores and quad channel memory.
  • drajitshnew - Friday, April 14, 2017 - link

    Dear Ian,
    Please clarify a point. You have mentioned that both AMD & Intel have 16 CPU PCIe lanes, but AMD offers 4 pcie lanes for storage from the CPU. If the chipset is loaded this could have an impact on the following 3 situations,
    1. If the motherboard manufacturer routes those lanes from m2 to PCIe. Then those could be used, as storage, adding a GPU for GPGPU or a 10GbE NIC for use for a UHD media server, or AIC format storage.
    2. With a heavily loaded chipset, a NVMe drive like a 1 TB samsung 960 pro or comparable, may show improved performance, specially in sequential transfers.
    3. For a long lived system a large X-point or Z-nand or 3d SLC may show significant latency advantages.
  • cvearl - Sunday, April 16, 2017 - link

    You have odd 480 results on GTA V. Are you using the final run (with the jet) from the built in test? My 480 scores in the mid 70's using your settings on that run with an i7 2600k.
  • cvearl - Sunday, April 16, 2017 - link

    Looking back at my GTX 1060 SC results (before I replaced with my 480) It had similar results to what you show here (Assuming the final run of the built in test). Am I to understand that the 480 gets a better result on i7 than Ryzen?
  • Polacott - Monday, April 17, 2017 - link

    my experience with AMD processors is that they have aged perfectly. I mean the AMD processors got more support and performance as apps and SO has been prepared to take advantage of more threads as years passed. I would get the Ryzen 1600X without any doubts over the i5.
  • rmlarsen - Monday, April 17, 2017 - link

    Unfortunate typo: In the conclusion it says "Looking at the results, it’s hard to notice the effect that 12 threads has on multithreaded CPU tests. " I believe the author meant to write "it's hard NOT to notice".
  • Kamgusta - Tuesday, April 18, 2017 - link

    Why in the Earth nobody ever considers the i7-7700?!?! And keep on putting the Ryzen CPUs only against the i5-7600K and/or the i7-7700K?

    i7-7700 has the same clocks as the i5-7600K, but double the threads and 2MB more L3. It consumes a lot less power than the i7-7700K and no more power than the i5-7600K. You can picture it as a more powerful i5-7600K or as a slight less powerful i7-7700K (but far more efficient).

    If anyone is torn between R6-1600 and i5-7600K then the i7-7700 is, quite ironically, the best choice.
  • Ratman6161 - Tuesday, April 18, 2017 - link

    So over the weekend I upgraded my system from an i72600K to a Ryzen 5 1600. First off, I could care less about gaming so I'll put that out there up front. I can buy (in order of real world price)
    i7 7700K for $300
    ryzen 1600x would have been $249
    Ryzen 5 1600 was $219
    i5 7600K for $210.
    I went with the R5 1600. For highly multi threaded tasks (remembering I don't care anything about games about games) the six core R5's compare very favorably with the i7 7700K even though most of the comparisons you see match them up against the i5. And the big difference between the 1600 and the 1600X is clock speed...and they are unlocked. So for me the 1600 ended up being a no-brainer.
    So for us non-gamers anyway, i'd disagree with the i7 7700K being the best choice.
    Also, when comparing prices, look at the platform price including motherboards. I got an Asrock AB350 Pro 4 for $39 bundled with the CPU so total price $258. Cheapest 7600K bundle at the same place: $315, cheapest 7700K bundle $465.

Log in

Don't have an account? Sign up now