Core: Load Me Up

When discussing the size of the reorder buffer, I mentioned that for some ops relying on the data of others, the order in which they need to be processed has to remain consistent – the load for the second op has to follow the store from the first in order for the calculation to be correct. This works for data that is read from and written to the same location in the same data stream, however with other operations, the memory addresses for loads and stores are not known until they pass the address generation units (AGUs).

This makes reordering a problem at a high level. You ultimately do not want a memory location to be written and stored by two different operations at the same time, or for the same memory address to be used by different ops while one of those ops is sitting in the reorder queue. When a load micro-op enters the buffer, the memory addresses of previous stores are not known until they pass the AGUs. Note, that this applies to memory addresses in the caches as well as main memory. However, if one can speed up loads and load latency in the buffers, this typically has a positive impact in most software scenarios.

With Core, Intel introduced a ‘New Memory Disambiguation’. For lack of a better analogy, this means that the issue of loads preceding stores is given a ‘do it and we’ll clean up after’ approach. Intel stated at the time that the risk that a load will load a value out of an address that is being written to by a store that has yet to be finished is pretty small (1-2%), and the chance decreases with larger caches. So by allowing loads to go head of stores, this allows a speedup but there has to be a catch net for when it goes wrong. To avoid this, a predictor is used to help. The dynamic alias predictor tries to spot this issue. If it happens, the load will have to be repeated, with a penalty of about 20-cycles.

Unofficial AnandTech Diagram

The predictor gives permission for a load to move ahead of a store, and after execution the conflict logic scans the buffer in the Memory reOrder Buffer (MOB) to detect an issue. If it happens, then the load is reprocessed back up the chain. In the worst case scenario, this might reduce performance, but as Johan said back in 2006: ‘realistically it is four steps forward and one step back, resulting in a net performance boost’.

Using this memory disambiguation technique, Intel reported a 40% performance boost purely on allowing loads to be more flexible in a number of synthetic loads (or 10-20% in real world), along with L1 and L2 performance boosts. It is worth noting that this feature affects INT workloads more often than FP workloads, purely on the basis that FP workloads tend to be more ordered by default. This is why AMD’s K8 lost ground to Intel on INT workloads, despite having a lower latency memory system and more INT resources, but stayed on track with FP.

Core: No Hyper-Threading, No Integrated Memory Controller

In 2016, HT and an integrated memory controller (IMC) are now part of the fundamental x86 microarchitecture in the processors we can buy. It can be crazy to think that one of the most fundamental upticks in x86 performance in the last decade lacked these two features. At the time, Intel gave reasons for both.

Simultaneous Hyper-Threading, the act of having two threads funnel data through a single core, requires large buffers to cope with the potential doubling of data and arguably halves resources in the caches, producing more cache pressure. However, Intel gave different reasons at the time – while SMT gave a 40% performance boost, it was only seen as a positive by Intel in server applications. Intel said that SMT makes hotspots even hotter as well, meaning that consumer devices would become power hungry and hot without any reasonable performance improvement.

On the IMC, Intel stated at the time that they had two options: an IMC, or a larger L2 cache. Which one would be better is a matter for debate, but Intel in the end went with a 4 MB L2 cache. Such a cache uses less power than an IMC, and leaving the IMC on the chipset allows for a wider support range of memory types (in this case DDR2 for consumers and FB-DIMM for servers). However, having an IMC on die improves memory latency significantly, and Intel stated that techniques such as memory disambiguation and improved prefetch logic can soak up this disparity.

As we know know, on-die IMCs are the big thing.

Core: Out of Order and Execution Core: Performance vs. Today
Comments Locked

158 Comments

View All Comments

  • bcronce - Wednesday, July 27, 2016 - link

    My AMD 2500+XP lasted me until a Nahalem i7 2.66ghz. It was a slight.... upgrade
  • artk2219 - Friday, July 29, 2016 - link

    Very minor, im sure you barely noticed :).
  • jjpcat@hotmail.com - Wednesday, July 27, 2016 - link

    I have a Q6600 in my household and it's still running well.

    In term on performance, E6400 is about the same as the CPUs (e.g. z3735f/z3745f) used in nearly all cloudbook these days.
  • Michael Bay - Thursday, July 28, 2016 - link

    Yep, I was surprised at that when looking through the benchmarks. Turns out Atom is not so slow after all.
  • stardude82 - Wednesday, July 27, 2016 - link

    I've just finished decommissioning all my Core 2 Duo parts, several of which have been upgraded with 2nd hand Sandy Bridge components.

    Yeah, CPU performance has been relatively stagnant. CPUs have come to where commercial jets are now in their technological development. Jets now fly slower than they did the 1960s, but have much better fuel economy per seat.

    Not noted in the E6400 v. i5-6600 comparison is that they both have the same TDP which is pretty impressive. Also, you've got to take inflation into account which would bring the CPU price up to $256 or there about, enough for a i5-6600K.
  • ScottAD - Wednesday, July 27, 2016 - link

    One could argue that while Core put Intel on top of the heap again, Sandy Bridge was a more important shift in design and as a result, many users went from Conroe to Sandy Bridge and have stayed there.

    That pretty much defines my PC currently. Haven't needed to upgrade. Crazy a decade like nothing.
  • ianmills - Wednesday, July 27, 2016 - link

    When a website has trouble keeping up with current content and instead recycles decades old content.... things that make you go hmm...
  • Ian Cutress - Wednesday, July 27, 2016 - link

    I'm the CPU editor, we've been up to date for every major CPU launch for the last couple of years, sourcing units that Intel haven't sourced other websites and have done comprehensive and extensive reviews of every leading x86 development. We have had every Haswell-K (2), Haswell-E(3) Broadwell (2), Broadwell E3 Xeon (3), Broadwell-E (4) and Skylake-K (2) CPU tested and reviewed on each official day of launch. We have covered Kaveri and Carrizo in deep repeated detail over the last few years as well.

    This is an important chip and today marks in an important milestone.

    Hmm...?
  • smilingcrow - Wednesday, July 27, 2016 - link

    Ananand do CPUs very well, can't think of anyone better. Kudos and thanks to you 'guys'.

    "This primarily leaves ARM (who was recently acquired by Softbank)"

    They are under offer so not guaranteed to go through and ARM isn't a person. :)
  • ianmills - Wednesday, July 27, 2016 - link

    I agree you do a good job with CPU's. Its some of the other topics that this site has been slowed down in when compared to previous years

Log in

Don't have an account? Sign up now