System Specs

Lastly, let's take a look at some high level specs. It is interesting to note that the IBM POWER8 inside our S812LC server is a 10-core Single Chip Module. In other words it is a single 10-core die, unlike the 10-core chip in our S822L server which was made of two 5-core dies. That should improve performance for applications that use many cores and need to synchronize, as the latency of hopping from one chip to another is tangible.

The SKU inside the S812LC is available to third parties such Supermicro and Tyan. This cheaper SKU runs at "only" 2.92 GHz, but will easily turbo to 3.5 GHz.

Feature IBM POWER8
(Available in LC servers)
Intel
Broadwell (Xeon E5 v4)
Process tech. 22nm SOI 14nm FinFET
Max clock 2.92-3.5 GHz 2.2-3.6 GHz
Max. core count
Max. thread count
10@2.92 GHz (3.5 GHz Turbo)
80 SMT
22@2.2 GHz (2.8 GHz turbo)
44 SMT
TDP 190W 145W
L1-I​ / L1-D Cache 32 KB/64 KB 32 KB/32 KB
L2 Cache 512 KB SRAM ​per core 256 KB SRAM ​per core
L3 Cache 8 MB eDRAM ​per core 2.5 MB SRAM per core
L4 Cache 16 MB eDRAM ​per MBC
(64 MB total)
None
Memory 1 TB per socket - 32 slots
(32 GB per DIMM)
0.768 TB per socket - 12 slots
(64 GB per DIMM)
Theoretical Memory Bandwidth 76.8 GB/s Read
38.4 GB/s Write
76.8 GB/s Read or Write
PCIe 3.0 Lanes 32 Lanes 40 Lanes

The Xeon and IBM POWER8 have totally different memory subsystems. The IBM POWER8 connects to 4 "Centaur" buffer cache chips, which have each a 19.2 GB/s read and 9.6 GB/s write link to the processor, or 28.8 GB/s in total. This is a more efficient connection than the Xeon which has a simpler half-duplex connection to the RAM: it can either write with 76.8 GB/s to the 4 channels or read from the 4 channels. Considering that reads happen twice as much as writes, the IBM architecture is - in theory - better balanced and has more aggregated bandwidth.

Heavy SMT: Multi Threading Prowess Configuration and Benchmark Selection
Comments Locked

124 Comments

View All Comments

  • zodiacfml - Thursday, July 21, 2016 - link

    Like a good TV series, I can't wait for the next episode.
  • aryonoco - Friday, July 22, 2016 - link

    OK, this is literally why Anandtech is the best in the tech journalism industry.

    There is nowhere else on the net that you can find a head to head comparison between POWER and Xeon, and unless you work in the tech department of a Fortune 500 company, this information has just not been available, until now.

    Johan, thank you for your work on this article. I did give you beef in your previous article about using LE Ubuntu but I concede your point. Very happy to you are writing more for Anandtech these days.

    Xeons really need some competition. Whether that competition comes from POWER or ARM or Zen, I am happy to see some competition. IBM has big plans for POWER9. Hopefully this is just the start of things to come.
  • JohanAnandtech - Friday, July 22, 2016 - link

    Thanks! it is very exciting to perform benchmarks that nobody has published yet :-).

    In hindsight, I have to admit that the first article contained too few benchmarks that really mattered for POWER8. Most of our usual testing and scripting did not work, and so after lot of tinkering, swearing and sweat I got some benchmarks working on this "exotic to me" platform. The contrast between what one would expect to see on POWER8 and me being proud of being able to somewhat "tame the beast" could not have been greater :-). In other words, there was a learning curve.
  • tipoo - Friday, July 22, 2016 - link

    I found it very interesting as well and would certainly not mind seeing more from this space, like maybe Xeon Phi and SPARC M7
  • jospoortvliet - Tuesday, July 26, 2016 - link

    Amen. But, to not ask to much, just the prospect of part 2 of the Power benchmark is already super exciting. Yes, the Internetz need more of this!
  • Daniel Egger - Friday, July 22, 2016 - link

    Not quite sure what the Endianess of a systems adds to the competitive factor. Maybe someone could elaborate why it is so important to run a system in LE?
  • ZeDestructor - Friday, July 22, 2016 - link

    Not much, really, with the compilers being good and all that.

    Really, it's quite clearly there just for some excellent alliteration.
  • JohanAnandtech - Friday, July 22, 2016 - link

    Basically LE reduces the barrier for an IBM server being integrated in x86 dominated datacenter.

    see https://www.ibm.com/developerworks/community/blogs...

    Just a few reasons:

    "Numerous clients, software partners, and IBM’s own software developers have told us that porting their software to Power becomes simpler if the Linux environment on Power supports little endian mode, more closely matching the environment provided by Linux on x86. This new level of support will *** lower the barrier to entry for porting Linux on x86 software to Linux on Power **."

    "A system accelerator programmer (GPU or FPGA) who needs to share memory with applications running in the system processor must share data in an pre-determined endianness for correct application functionality."
  • Daniel Egger - Friday, July 22, 2016 - link

    While correct in theory, this hasn't been a problem for the last 20 years. People are used to using BE on PPC/POWER, the software, the drivers and the infrastructure are very mature (as a matter of fact it was my job 15 years ago to make sure they are). PPC/POWER actually have configurable endianess so if someone wanted to go LE earlier it would have easily been possible but only few ever attempted that stunt; so why have the big disruption now?
  • KAlmquist - Friday, July 22, 2016 - link

    I assume that this is about selling POWER boxes to companies that currently run all x86 servers, and have a bunch of custom software that they might be willing to recompile. If the customer has to spend a bunch of time fixing endian dependencies in his software in order to get it to work on POWER, it will probably be less expensive for them to simply stick with x86.

Log in

Don't have an account? Sign up now