Assessing IBM's POWER8, Part 1: A Low Level Look at Little Endian
by Johan De Gelas on July 21, 2016 8:45 AM ESTComparing with Intel's Best
Comparing CPUs in tables is always a very risky game: those simple numbers hide a lot of nuances and trade-offs. But if we approach with caution, we can still extract quite a bit of information out of it.
Feature | IBM POWER8 |
Intel Broadwell (Xeon E5 v4) |
Intel Skylake |
L1-I cache Associativity |
32 KB 8-way |
32 KB 8-way |
32 KB 8-way |
L1-D cache Associativity |
64 KB 8-way |
32 KB 8-way |
32 KB 8-way |
Outstanding L1-cache misses | 16 | 10 | 10 |
Fetch Width | 8 instructions | 16 bytes (+/- 4-5 x86) | 16 bytes (+/- 4-5 x86) |
Decode Width | 8 | 4 µops | 5-6* µops (*µop cache hit) |
Issue Queue | 64+15 branch+8 CR = 87 |
60 unified | 97 unified |
Issue Width/Cycle | 10 | 8 | 8 |
Instructions in Flight | 224 (GCT SMT-8 modus) | 192 (ROB) | 224 (ROB) |
Archi regs Rename regs |
32 (ST), 2x32 (SMT-2) 92 (ST), 2x92 (SMT-2) |
16 168 |
16 180 |
Load Bandwidth (per unit) Load Queue Size |
4 per cycle 16B/cycle 44 entries |
2 per cycle 32B/cycle 72 entries |
2 per cycle 32B/cycle 72 entries |
Store Bandwidth Store Queue Size |
2 per cycle 16B/cycle 40 entries |
1 per cycle 32B/cycle 42 entries |
1 per cycle 32B/cycle 56 entries |
Int. Pipeline Length |
18 stages |
19 stages |
19 stages 14 stage from µop cache |
TLB | 2048 4-way |
128I + 64D L1 1024 8-way |
128I + 64D L1 1536 8-way |
Page Support | 4 KB, 64 KB, 16 MB, 16 GB | 4 KB, 2/4 MB, 1 GB | 4 KB, 2/4 MB, 1 GB |
Both CPUs are very wide brawny Out of Order (OoO) designs, especially compared to the ARM server SoCs.
Despite the lower decode and issue width, Intel has gone a little bit further to optimize single threaded performance than IBM. Notice that the IBM has no loop stream detector nor µop cache to reduce branch misprediction. Furthermore the load buffers of the Intel microarchitecture are deeper and the total number of instructions in flight for one thread is higher. The TLB architecture of the IBM POWER8 has more entries while Intel favors speedy address translations by offering a small level one TLB and a L2 TLB. Such a small TLB is less effective if many threads are working on huge amounts of data, but it favors a single thread that needs fast virtual to physical address translation.
On the flip side of the coin, IBM has done its homework to make sure that 2-4 threads can really boost the performance of the chip, while Intel's choices may still lead to relatively small SMT related performance gains in quite a few applications. For example, the instruction TLB, µop cache (Decode Stream Buffer) and instruction issue queues are divided in 2 when 2 threads are active. This will reduced the hit rate in the micro-op cache, and the 16 byte fetch looks a little bit on the small side. Let us see what IBM did to make sure a second thread can result in a more significant performance boost.
124 Comments
View All Comments
zodiacfml - Thursday, July 21, 2016 - link
Like a good TV series, I can't wait for the next episode.aryonoco - Friday, July 22, 2016 - link
OK, this is literally why Anandtech is the best in the tech journalism industry.There is nowhere else on the net that you can find a head to head comparison between POWER and Xeon, and unless you work in the tech department of a Fortune 500 company, this information has just not been available, until now.
Johan, thank you for your work on this article. I did give you beef in your previous article about using LE Ubuntu but I concede your point. Very happy to you are writing more for Anandtech these days.
Xeons really need some competition. Whether that competition comes from POWER or ARM or Zen, I am happy to see some competition. IBM has big plans for POWER9. Hopefully this is just the start of things to come.
JohanAnandtech - Friday, July 22, 2016 - link
Thanks! it is very exciting to perform benchmarks that nobody has published yet :-).In hindsight, I have to admit that the first article contained too few benchmarks that really mattered for POWER8. Most of our usual testing and scripting did not work, and so after lot of tinkering, swearing and sweat I got some benchmarks working on this "exotic to me" platform. The contrast between what one would expect to see on POWER8 and me being proud of being able to somewhat "tame the beast" could not have been greater :-). In other words, there was a learning curve.
tipoo - Friday, July 22, 2016 - link
I found it very interesting as well and would certainly not mind seeing more from this space, like maybe Xeon Phi and SPARC M7jospoortvliet - Tuesday, July 26, 2016 - link
Amen. But, to not ask to much, just the prospect of part 2 of the Power benchmark is already super exciting. Yes, the Internetz need more of this!Daniel Egger - Friday, July 22, 2016 - link
Not quite sure what the Endianess of a systems adds to the competitive factor. Maybe someone could elaborate why it is so important to run a system in LE?ZeDestructor - Friday, July 22, 2016 - link
Not much, really, with the compilers being good and all that.Really, it's quite clearly there just for some excellent alliteration.
JohanAnandtech - Friday, July 22, 2016 - link
Basically LE reduces the barrier for an IBM server being integrated in x86 dominated datacenter.see https://www.ibm.com/developerworks/community/blogs...
Just a few reasons:
"Numerous clients, software partners, and IBM’s own software developers have told us that porting their software to Power becomes simpler if the Linux environment on Power supports little endian mode, more closely matching the environment provided by Linux on x86. This new level of support will *** lower the barrier to entry for porting Linux on x86 software to Linux on Power **."
"A system accelerator programmer (GPU or FPGA) who needs to share memory with applications running in the system processor must share data in an pre-determined endianness for correct application functionality."
Daniel Egger - Friday, July 22, 2016 - link
While correct in theory, this hasn't been a problem for the last 20 years. People are used to using BE on PPC/POWER, the software, the drivers and the infrastructure are very mature (as a matter of fact it was my job 15 years ago to make sure they are). PPC/POWER actually have configurable endianess so if someone wanted to go LE earlier it would have easily been possible but only few ever attempted that stunt; so why have the big disruption now?KAlmquist - Friday, July 22, 2016 - link
I assume that this is about selling POWER boxes to companies that currently run all x86 servers, and have a bunch of custom software that they might be willing to recompile. If the customer has to spend a bunch of time fixing endian dependencies in his software in order to get it to work on POWER, it will probably be less expensive for them to simply stick with x86.