Comparing with Intel's Best

Comparing CPUs in tables is always a very risky game: those simple numbers hide a lot of nuances and trade-offs. But if we approach with caution, we can still extract quite a bit of information out of it.

Feature IBM POWER8
 
Intel
Broadwell (Xeon E5 v4)
Intel
Skylake
L1-I cache
Associativity
32 KB
8-way
32 KB
8-way
32 KB
8-way
L1-D cache
Associativity
64 KB
8-way
32 KB
8-way
32 KB
8-way
Outstanding L1-cache misses 16 10 10
Fetch Width 8 instructions 16 bytes (+/- 4-5 x86) 16 bytes (+/- 4-5 x86)
Decode Width 8 4 µops 5-6* µops
(*µop cache hit)
Issue Queue 64+15 branch+8 CR
= 87 
60 unified 97 unified
Issue Width/Cycle 10   8 8
Instructions in Flight 224 (GCT SMT-8 modus) 192 (ROB) 224 (ROB)
Archi regs
Rename regs
32 (ST), 2x32 (SMT-2)
92 (ST), 2x92 (SMT-2)
16
168
16
180
Load
Bandwidth (per unit)
Load Queue Size
4 per cycle
16B/cycle

44 entries
2 per cycle
32B/cycle

72 entries
2 per cycle
32B/cycle

72 entries
Store
Bandwidth
Store Queue Size
2 per cycle
16B/cycle
40 entries
1 per cycle
32B/cycle
42 entries
1 per cycle
32B/cycle
56 entries
Int. Pipeline Length

18 stages

19 stages
14 stage from µop cache


19 stages
14 stage from µop cache
TLB 2048
4-way
128I + 64D L1
1024
8-way
128I + 64D L1
1536
8-way
Page Support 4 KB, 64 KB, 16 MB, 16 GB 4 KB, 2/4 MB, 1 GB 4 KB, 2/4 MB, 1 GB

Both CPUs are very wide brawny Out of Order (OoO) designs, especially compared to the ARM server SoCs.

Despite the lower decode and issue width, Intel has gone a little bit further to optimize single threaded performance than IBM. Notice that the IBM has no loop stream detector nor µop cache to reduce branch misprediction. Furthermore the load buffers of the Intel microarchitecture are deeper and the total number of instructions in flight for one thread is higher. The TLB architecture of the IBM POWER8 has more entries while Intel favors speedy address translations by offering a small level one TLB and a L2 TLB. Such a small TLB is less effective if many threads are working on huge amounts of data, but it favors a single thread that needs fast virtual to physical address translation.

On the flip side of the coin, IBM has done its homework to make sure that 2-4 threads can really boost the performance of the chip, while Intel's choices may still lead to relatively small SMT related performance gains in quite a few applications. For example, the instruction TLB, µop cache (Decode Stream Buffer) and instruction issue queues are divided in 2 when 2 threads are active. This will reduced the hit rate in the micro-op cache, and the 16 byte fetch looks a little bit on the small side. Let us see what IBM did to make sure a second thread can result in a more significant performance boost.

Inside the Beast(s) Heavy SMT: Multi Threading Prowess
Comments Locked

124 Comments

View All Comments

  • abufrejoval - Thursday, August 4, 2016 - link

    I believe "heavily threaded" is somewhat imprecise here: Knights Landing (KNL) is really more about vectorized workloads, or one very loopy and computationally expensive problem, which has been partitioned into lots of chunks, but has high locality. Same code, related data, far more computational throughput than data flowthrough.

    Power8 will do better on such workloads than perhaps Intel, but never as good as a GPU or KNL.

    However it does evidently better per core on highly threaded workloads, where lots of execution threads share the same code but distinct or less related datasets, less scientific and more commercial workloads, more data flowing through.

    Funnily KNL might even do well there, beating its Xeon-D sibling in every benchmark, even in terms of energy efficience.

    But I'm afraid that's because most of the KNL surface area would remain dark on such workload while the invests would burn through any budget.

    KNL is an odd beast designed for a rather specific job and only earn its money there, even if you can run Minecraft or Office on it.
  • Kevin G - Friday, July 22, 2016 - link

    I do think comparison with Xeon Phi is fair since it can run/boot itself now with Knight's Landing. Software parity with the normal x86 ecosystem is now there so it can run off the shelf binaries.

    I am very curious how well such a dense number of cores perform for workloads that don't need high single threaded performance.

    Another interest factor would be memory bandwidth performance as Xeon Phi has plenty. The HMC only further enhances that metric and worth exploring it as both a cache and main memory region for benchmarks.
  • Ratman6161 - Thursday, July 21, 2016 - link

    Will you be addressing virtualization in a future article. I ask this because you are saying the lower cost Power8 systems are intended to compete with the Dell's, HP's, Lenovo etc x86 servers. But these days, a very high percentage of x86 work loads are virutalized either on VMWare or competing products. In 2009 Gartner had it at about 50% and by 2014 it was at 70%. I didn't find a number for '15 or '16 but I expect the percentage would have continued to rise. So if they want to take the place of x86 boxes, they have to be able to do the tasks those boxes do...which tends to largely be to run virtual machines that do the actual workloads.

    And, what about all the x86 boxes running Windows Server or more commonly Windows Server Virtual machines? Windows Server shops aren't likely to ditch windows in favor of Linux solely for the privilege of running on Power8?

    One last thing to consider regarding price. These days we can buy quite robust Intel based server for around $10K. So, supposing I can buy a Power8 system for about the same price? Essentially the hardware has gotten so cheap compared to the licensing and support costs for the software we are running that its a drop in the bucket. If we needed 10 Intel servers or 6 Power 8's to do the same job (assuming the Power8's could run all our VM's), the Power8's could come out lower priced hardware wise, but the difference is, as I said, a drop in the bucket in the overall scheme of things. Performance wise, with the x86 boxes, you just throw more cores at it.
  • aryonoco - Friday, July 22, 2016 - link

    KVM works well on POWER.

    No idea about proprietary things like VMWare. But that would be up to them to port.
  • Ratman6161 - Friday, July 22, 2016 - link

    Near as I can tell, there is a PowerKVM that runs on Power 8 but that doesn't allow you to run Windows Server VM's - seems to support only Linux guests.
  • Zetbo - Saturday, July 23, 2016 - link

    Windows does not support POWER, so there is no point of using POWER if you need Windows!
  • utroz - Thursday, July 21, 2016 - link

    AMD should have used IBM's 22nm SOI to make cpu's so that they would not have been totally dead in the performance and server cpu market for years. GF now owns this process as they "bought" IBM's fabs and tech. I think that 22nm SOI might be better for high speed cpu's than the 14nm LPP FinFet that AMD is using for ZEN at the cost of die size.
  • amagriva - Thursday, July 21, 2016 - link

    How much you payed your cristal ball?
  • spikebike - Thursday, July 21, 2016 - link

    So a single socket Power8 is somewhat faster than the intel chip. But is being compared in a single socket configuration where the intel is designed for a two socket. Unless the power8 is cheaper than an intel dual socket seems most fare to compare both CPU as they are designed to be used.
  • SarahKerrigan - Friday, July 22, 2016 - link

    Power is designed for systems up to 16 sockets (IBM E880.) One socket is just the entry point.

Log in

Don't have an account? Sign up now