Designing GP104: Running Up the Clocks

So if GP104’s per-unit throughput is identical to GM204, and the SM count has only been increased from 2048 to 2560 (25%), then what makes GTX 1080 60-70% faster than GTX 980? The answer there is that instead of vastly increasing the number of functional units for GP104 or increasing per-unit throughput, NVIDIA has instead opted to significantly raise the GPU clockspeed. And this in turn goes back to the earlier discussion on TSMC’s 16nm FinFET process.

With every advancement in fab technology, chip designers have been able to increase their clockspeeds thanks to the basic physics at play. However because TSMC’s 16nm node adds FinFETs for the first time, it’s extra special. What’s happening here is a confluence of multiple factors, but at the most basic level the introduction of FinFETs means that the entire voltage/frequency curve gets shifted. The reduced leakage and overall “stronger” FinFET transistors can run at higher clockspeeds at lower voltages, allowing for higher overall clockspeeds at the same (or similar) power consumption. We see this effect to some degree with every node shift, but it’s especially potent when making the shift from planar to FinFET, as has been the case for the jump from 28nm to 16nm.

Given the already significant one-off benefits of such a large jump in the voltage/frequency curve, for Pascal NVIDIA has decided to fully embrace the idea and run up the clocks as much as is reasonably possible. At an architectural level this meant going through the design to identify bottlenecks in the critical paths – logic sections that couldn’t run at as high a frequency as NVIDIA would have liked – and reworking them to operate at higher frequencies. As GPUs typically (and still are) relatively low clocked, there’s not as much of a need to optimize critical paths in this matter, but with NVIDIA’s loftier clockspeed goals for Pascal, this changed things.

From an implementation point of view this isn’t the first time that NVIDIA has pushed for high clockspeeds, as most recently the 40nm Fermi architecture incorporated a double-pumped shader clock. However this is the first time NVIDIA has attempted something similar since they reined in their power consumption with Kepler (and later Maxwell). Having learned their lesson the hard way with Fermi, I’m told a lot more care went into matters with Pascal in order to avoid the power penalties NVIDIA paid with Fermi, exemplified by things such as only adding flip-flops where truly necessary.

Meanwhile when it comes to the architectural impact of designing for high clockspeeds, the results seem minimal. While NVIDIA does not divulge full information on the pipeline of a CUDA core, all of the testing I’ve run indicates that the latency (in clock cycles) of the CUDA cores is identical to Maxwell. Which goes hand in hand with earlier observations about throughput. So although optimizations were made to the architecture to improve clockspeeds, it doesn’t look like NVIDIA has made any more extreme optimizations (e.g. pipeline lengthening) that detectably reduces Pascal’s per-clock performance.

Beyond3D Suite - Estimated MADD Latency

Finally, more broadly speaking, while this is essentially a one-time trick for NVIDIA, it’s an interesting route for them to go. By cranking up their clockspeeds in this fashion, they avoid any real scale-out issues, at least for the time being. Although graphics are the traditional embarrassingly parallel problem, even a graphical workload is subject to some degree of diminishing returns as GPUs scale farther out. A larger number of SMs is more difficult to fill, not every aspect of the rendering process is massively parallel (shadow maps being a good example), and ever-increasing pixel shader lengths compound the problem. Admittedly NVIDIA’s not seeing significant scale-out issues quite yet, but this is why GTX 980 isn’t quite twice as fast as GTX 960, for example.

Just increasing the clockspeed, comparatively speaking, means that the entire GPU gets proportionally faster without shifting the resource balance; the CUDA cores are 43% faster, the geometry frontends are 43% faster, the ROPs are 43% faster, etc. The only real limitation in this regard isn’t the GPU itself, but whether you can adequately feed it. And this is where GDDR5X comes into play.

FP16 Throughput on GP104: Good for Compatibility (and Not Much Else) Feeding Pascal: GDDR5X
Comments Locked

200 Comments

View All Comments

  • Ninhalem - Wednesday, July 20, 2016 - link

    There's 32 freaking pages in this review. Maybe people have other jobs instead of writing all day long. Did you ever think of that?

    I'll take quality and a long publishing time over crap and rushing out the door.
  • Stuka87 - Wednesday, July 20, 2016 - link

    Thanks for the extremely in depth review Ryan!
  • cknobman - Wednesday, July 20, 2016 - link

    I cannot help feel just a bit underwhelmed.

    Of course these Nvidia cards kick some major butt in games that have always favored Nvidia but I noticed that in games not specifically coded to take advantage of Nvidia and furthermore games with DX12 that these cards performance advantage is minimal at best vs an old Fury X with half the video RAM.

    Then when you take into account Vulcan API and newer DX12 games (which can be found elsewhere) you see that the prices for these cards is a tad ridiculous and the performance advantage starts to melt away.

    I am waiting for AMD to release their next "big gun" before I make a purchase decision.
    I'm rocking a 4k monitor right now and 60fps at that resolution is my target.
  • nathanddrews - Wednesday, July 20, 2016 - link

    1080 is close to being that 4K60 card, but can't quite cut it. I'm waiting for "Big Vega" vs 1080Ti before dropping any money.
  • lefty2 - Wednesday, July 20, 2016 - link

    Great review - one of the few that highlights the fact the Pascal async compute is only half as good as AMD's version. Async compute is a key feature for increasing performance in DX12 and Vulkan and that's going to allow the RX 480 to perform well against the GTX 1060
  • Daniel Egger - Wednesday, July 20, 2016 - link

    "... why the memory controller organization of GP104 is 8x32b instead of 4x64b like GM204"

    Sounds like it's the other way around.
  • Ryan Smith - Wednesday, July 20, 2016 - link

    No, that's correct. 8 32bit wide controllers rather than 4 64bit wide controllers.

    http://images.anandtech.com/doci/10325/GeForce_GTX...

    http://images.anandtech.com/doci/8526/GeForce_GTX_...
  • DominionSeraph - Wednesday, July 20, 2016 - link

    >It has taken about 2 years longer than we’d normally see

    ... for a review of a flagship card to come out
  • sgeocla - Wednesday, July 20, 2016 - link

    The old Maxwell was so optimized it was always full and didn't even need Async Compute. The new Pascal is so much more optimized that it even has time to create the "holes" in execution (not counting the ones in your pocket) that were "missing" in the old architecture to be able to benefit for Async Compute. Expect Volta to create even more holes (with hardware support) for Async Compute to fill.
  • tipoo - Wednesday, July 20, 2016 - link

    That's demonstrably untrue.

    http://www.futuremark.com/pressreleases/a-closer-l...

    Plenty of holes that could have been filled in Maxwell.

Log in

Don't have an account? Sign up now