Sequential Read Performance

The sequential read test requests 128kB blocks and tests queue depths ranging from 1 to 32. The queue depth is doubled every three minutes, for a total test duration of 18 minutes. The test spans the entire drive, and the drive is filled before the test begins. The primary score we report is an average of performances at queue depths 1, 2 and 4, as client usage typically consists mostly of low queue depth operations.

Iometer - 128KB Sequential Read

The 250GB 750 EVO comes in right behind the 850 EVO and Pro for sequential read speed, and the 120GB 750 EVO surprises by coming in fourth, significantly ahead of both the 120GB 850 EVO and 128GB 850 Pro.

Iometer - 128KB Sequential Read (Power)

Power consumption for the 750 EVO is a little high but nothing concerning. Only a few MLC drives distinguish themselves with particularly high efficiency during sequential reads.

The high performance score of the 750 EVOs is due primarily to their unusually good QD1 speeds, which are quite close to the limit reached at higher queue depths.

Sequential Write Performance

The sequential write test writes 128kB blocks and tests queue depths ranging from 1 to 32. The queue depth is doubled every three minutes, for a total test duration of 18 minutes. The test spans the entire drive, and the drive is filled before the test begins. The primary score we report is an average of performances at queue depths 1, 2 and 4, as client usage typically consists mostly of low queue depth operations.

Iometer - 128KB Sequential Write

Sequential write speeds of the 750 EVO are significantly lower than the 850 EVO and not competitive with MLC drives, but are in the lead among planar TLC drives.

Iometer - 128KB Sequential Write (Power)

Power consumption for the 750 EVO is significantly higher than the 850 EVO, but it is still more efficient than the planar TLC competitors.

Most drives show no scaling with queue depth in this test, and the 750 EVO follows suit.

Random Performance Mixed Read/Write Performance
Comments Locked

109 Comments

View All Comments

  • Coup27 - Friday, April 22, 2016 - link

    SATA is not yesterdays tech.
  • abrowne1993 - Friday, April 22, 2016 - link

    More like yesteryear
  • Death666Angel - Friday, April 22, 2016 - link

    So, everyone with perfectly capable CPUs that are barely slower than current tech should upgrade because SATA is old? I'm not disputing that SATA is the older tech, I'm just looking for a more nuanced and realistic view here. If your workload is sufficiently dependant on IO throughput, by all means get those NVMe drives. But implying that a SATA3 device like a 850pro is not going to do the job for a lot of people.... I have a Z87 4770k running at 4.5GHz. I'm not going to upgrade just for the convenience of M.2 PCIe NVMe support. And I won't do so until 6+ core CPUs with comparable IPC and OC abilities get decently priced.
  • Meteor2 - Saturday, April 23, 2016 - link

    No, not at all, and no-one said SATA is inadequate. But it is part of the past, just like 486s and dial-up modems.
  • Bleakwise - Sunday, April 24, 2016 - link

    No, SATA has a place. You realize a 2.5 SATA drive has about 10x-20x the volume of a NVME drive. No reason you could n't have a 3.5 inch SATA SSD either.

    Thus SATA will always be the go-to for high volume storage. Flash memory isn't going to be shrunk down anytime soon either, it degrades both performance and reliability, so until we get something better than flash SATA is going to be the only place you can get something like a 4TB or 8TB SSD.
  • Bleakwise - Sunday, April 24, 2016 - link

    Shinking thing smaller and smaller is also more expensive, and like I said in terms of flash it also degrades performance. It's much cheaper to build a big-fast thing than a small-fast thing.

    There is also the issue of RAID and mechanical drives for mass storage. I can setup a 20TB fakeraid with an SSD write-back cache for under a thousand dollars. Hardware raid would be about 2000$. The NVME version would be about 8000$ to 10000$.
  • Billy Tallis - Sunday, April 24, 2016 - link

    There are 2.5" NVMe drives using the U.2 connector to provide the same 4 lanes of PCIe that can be supplied by the M.2 connector.
  • slowdemon21 - Friday, April 29, 2016 - link

    Agree. SATA is the skylake bottleneck
  • ewitte - Tuesday, May 24, 2016 - link

    I hacked my bios to run a 950 pro in a z87 it was ridiculous to spend so much upgrading from a 4790k.
  • Coup27 - Friday, April 22, 2016 - link

    Do you not think there is something wrong with the phrase "consumer grade NVMe 2TB+ SSD" ?

    You could also RAID some SATA 2TB SSD's to give you want you need. I doubt you "really" need all of that space on NVMe, so maybe a 256 or 512GB 950 Pro + some 850 EVO's in RAID would work well, and is available now.

Log in

Don't have an account? Sign up now