AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in a day's usage, but with idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here.

AnandTech Storage Bench - Light (Data Rate)

The read-oriented nature of the Light test allows the 950 Pro to show off its throughput capabilities, with an average data rate more than three times what any SATA drive has achieved. But with frequent idle times and not many writes, this test does nothing to make the 950 Pro overheat and the heatsink makes no difference.

AnandTech Storage Bench - Light (Latency)AnandTech Storage Bench - Light (Latency)

The latency charts show virtually identical performance except for the number of 10ms+ outliers experienced by the 256GB drive. But on a test this short, that amounts to only about 16 more outliers and only 30ms difference in the total run time of the test. I'm actually surprised we're not seeing bigger random variation between runs.

AnandTech Storage Bench - Heavy Random Performance
Comments Locked

69 Comments

View All Comments

  • RealBeast - Monday, December 28, 2015 - link

    "You know, since the LED's are white" Not really.

    Tell the Nobel committee about it. The 2014 prize in physics went to the blue boys -- red and green had been around for a while, and only they made white possible: http://www.nobelprize.org/nobel_prizes/physics/lau...
  • h4rm0ny - Tuesday, December 22, 2015 - link

    Whilst agreeing with your point, you want either 'irrespective' or 'regardless', not "irregardless".

    More on topic I agree with both of you - I both recognize that what Teizo says about the customer base is probably true, and also agree with mooninite's despair that this is so. The two posts are not incompatible.
  • Murloc - Tuesday, December 22, 2015 - link

    -less = without
    ir- = in- before an 'r', the same as English un- (in- is latin, un- is germanic), it has a negative or privative force.

    pick one but not both.

    That said, RGB LEDs would make it cost too much, the price is already too high for consumers.
  • ddriver - Monday, December 21, 2015 - link

    DO'H, it is not rocket science, if it overheads and throttles back as a result, then it obviously needs a heat sink.
  • bug77 - Monday, December 21, 2015 - link

    I think these tests answer another important question: when does it overheat.
    As it is, the drives only overheat during sustained write. This is far from unexpected, but at the same time it is reassuring to know it is the only scenario where a drive would throttle (as opposed to throttling under regular desktop usage).
  • ddriver - Monday, December 21, 2015 - link

    But what about another important question, how much does it "hurt" to add a dollar worth of aluminum to improve a product worth several hundred dollars?
  • bug77 - Monday, December 21, 2015 - link

    If you have ever installed an M.2 drive, then you know there's not much space left for a heatsink. And you can only install it on one side. Even so, it's so close to the motherboard (and usually between PCIe slots) that if you don't have a hell of an airflow, it won't make much difference anyway.
    And that's only for desktops, good luck trying to fit a M.2 drive with a heatsink attached into an ultrabook.
  • ddriver - Monday, December 21, 2015 - link

    You are very limited conceptually - it doesn't have to be a "radiator" type of heatsink, a flat piece of aluminum 2-3 mm thick would suffice. Heatsinks come in various shapes and sizes, not necessary the bulky, thick finned design.

    The SSD doesn't displace a lot of heat to begin with, but without a heatsink for that HEAT to SINK into the bare chip quickly runs out of thermal room.

    Even if it still throttles, it will ramp the temp up slower as the heatsink will act as a buffer, and regardless of how little airflow it may have, a larger piece of aluminum will always displace much more heat than a tiny chip.

    It will be slower to overheat and faster to cool, even in an ultrabook or tablet, and yes, with the kind of heatsink it merits it will have no trouble fitting into portable devices.

    Judging by the performance regressions from adding a heatsink to the larger model, it would seem that engineers were well aware it throttles and have optimized the product for it, so taking care of the heat puts the device in a less than optimal standing. A firmware update should be enough to address this issue and eliminate any sort of performance regressions and actually improve it somewhat. Engineering a product which runs worse with better cooling - that's kind of an epic fail.
  • jjj - Monday, December 21, 2015 - link

    Unless it detects benchmarks and lets the controller clock higher for better scores.If VW can do it , the possibility needs to be investigated elsewhere too.
  • nathanddrews - Monday, December 21, 2015 - link

    You know what this means, right? Next test: custom water blocks.

Log in

Don't have an account? Sign up now