SoC Analysis: Apple A9X

Diving into the heart of the iPad Pro, we have Apple’s latest generation tablet SoC, A9X. Like the other Apple X series SoCs before it, A9X is by and large an enhanced and physically larger version of Apple’s latest phone SoC, taking advantage of the greater space and heat dissipation afforded by a tablet to produce a more powerful SoC.


Apple's A9X (Image Courtesy iFixit)

That Apple has developed a new SoC to launch alongside the iPad Pro is in no way surprising, but just as how the iPad Pro has ramifications for the overall iPad lineup as Apple gets into the productivity tablet market, iPad Pro’s genesis is reflected in its component selection. Apple already needed a powerful SoC for the iPad Air 2 in order to keep performance up with the tablet’s high resolution of the screen, and iPad Pro in turn pushes Apple’s performance needs even harder. Not only is there an even higher resolution screen to drive – the 2732x2048 display has about 66% of the pixels of a 4K display – but now Apple needs to deliver suitable performance for content creation and meaningful multitasking. I don’t want to imply that the A9X was somehow specifically designed from scratch for the iPad Pro, as there are a number of more important engineering considerations, but I do want to highlight how the iPad Pro is not just another iPad, and that as Apple expands the capabilities of the iPad they need to expand the performance as well if they wish to extend their reputation for smooth UX performance.

Looking at the specifications of the A9X, it seems like Apple always throws us a curveball on the X series SoCs, and for their latest SoC this is no different. With A8X Apple delivered more RAM on a wider memory bus, a larger GPU, and surprisingly, three Typhoon CPU cores. To date it’s still not clear just why Apple went with three CPU cores on A8X – was it for multitasking, or as an alternative means to boost performance – and A9X’s configuration only serves to highlight this enigma.

Apple SoC Comparison
  A9X A9 A8X A6X
CPU 2x Twister 2x Twister 3x Typhoon 2x Swift
CPU Clockspeed 2.26GHz 1.85GHz 1.5GHz 1.3GHz
GPU PVR 12 Cluster Series7XT PVR 6 Cluster Series7
(PVR GT7600)
PVR 8 Cluster Series6XT
(APL GXA6850)
PVR SGX554 MP4
RAM 4GB LPDDR4 2GB LPDDR4 2GB LPDDR3 1GB LPDDR2
Memory Bus Width 128-bit 64-bit 128-bit 128-bit
Memory Bandwidth 51.2GB/sec 25.6GB/sec 25.6GB/sec 17.1GB/sec
L2 Cache 3MB 3MB 2MB 1MB
L3 Cache None 4MB 4MB N/A
Manufacturing Process TSMC 16nm FinFET TSMC 16nm &
Samsung 14nm
TSMC 20nm Samsung 32nm

Instead of continuing with a triple-core CPU design for A9X, for their latest X series SoC Apple has dropped back down to just a pair of Twister CPU cores. The catch here – and why two cores is in many ways better than three – is that relative to A8X and A9, Apple has cranked up their CPU clockspeeds. Way, way up. Whereas the iPad Air 2 (A8X) shipped at 1.5GHz and the iPhone 6s (A9) at 1.85GHz, the A9X sees Apple push their clockspeed to 2.26GHz. Not counting the architectural changes, this is 22% higher clocked than the A9 and 51% higher than the A8X.

The fact that Apple dropped back down to 2 CPU cores is unexpected given that we don’t expect Apple to ever go backwards in such a fashion, and while we’ll never know the official reason for everything Apple does, in retrospect I’m starting to think that A8X was an anomaly and Apple didn’t really want a tri-core CPU in the first place. A8X came at a time where Apple was bound by TSMC’s 20nm process and couldn’t drive up their clockspeeds without vastly increasing power consumption, so a third core was a far more power effective option.


A9X Die Shot w/AT Annotations (Die Shot Courtesy Chipworks)

Overall this means that iPad Pro and A9X will set a very high bar for tablet CPU performance. As we’ve already seen in the iPhone 6s review, the Twister CPU core is very potent and in most cases faster than any other ARM CPU core by leaps and bounds. Cranking up the clockspeed a further 22% only serves to open up that gap even further, as Twister is now reaching clockspeeds similar to the likes of Cortex-A57 and A72, but with its much wider execution pipeline and greater IPC. This is also the reason that an Intel Core CPU comparison is so interesting, as Intel’s tablet-class Core processors in many ways are the target to beat on overall CPU performance, and we’ll be touching upon this subject in greater detail a bit later.

GPU: Imagination PowerVR 12 Cluster Series 7XT

Meanwhile on the GPU side, as expected Apple has further increased the number of clusters on their SoC to drive the higher resolution display of a tablet. Whereas A9 used a 6 cluster design (PVR GT7600), A9X doubles this, giving us a relatively massive 12 cluster design.

In Imagination’s PowerVR Series7XT roadmap, the company doesn’t have an official name for a 12 cluster configuration, as this falls between the 8 cluster GT7800 and 16 cluster GT7900. So for the moment I’m simply calling it a “PowerVR 12 cluster Series7XT design,” and with any luck Imagination will use a more fine-grained naming scheme for future generations of PowerVR graphics.

In any case, the use of a 12 cluster design is a bit surprising from an engineering standpoint since it means that Apple was willing to take the die space hit to implement additional GPU clusters, despite the impact this would have on chip yields and costs. If anything, with the larger thermal capacity and battery of the iPad Pro, I had expected Apple to use higher GPU clockspeeds (and eat the power cost) in order to save on chip costs. Instead what we’re seeing is a GPU that essentially offers twice the GPU power of A9’s GPU.

However to put all of this in context, keep in mind that iPad Pro’s display is 5.95Mpixels, versus the 2.07Mpixel screen on the iPhone 6s Plus. So although Apple has doubled the number of GPU clusters for A9X – and I suspect clocked it fairly similarly – that increased performance will be very quickly consumed by the iPad Pro’s high resolution screen. Consequently even a 12 cluster GPU design is something of a compromise; if Apple wanted to maintain the same level of GPU performance per pixel as in the iPhone 6s family, they would have needed an even more powerful GPU. Which just goes to show how demanding tablets can be.

Memory Subsystem: 128-bit LPDDR4-3200, No L3 Cache

Responsibility for feeding the beast that is A9X’s GPU falls to A9X’s 128-bit LPDDR4 memory controller configuration. With twice as many GPU clusters, Apple needs twice as much memory bandwidth to maintain the same bandwidth-to-core ratio, so like the past X-series tablet SoCs, A9X implements a 128-bit bus. For Apple this means they now have a sizable 51.2GB/sec of memory bandwidth to play with. For an SoC this is a huge amount of bandwidth, but at the same time it’s quickly going to be consumed by those 12 GPU clusters.

Geekbench 3 Memory Bandwidth Comparison (1 thread)
  Stream Copy Stream Scale Stream Add Stream Triad
Apple A9X 2.26GHz 20.8 GB/s 15.0 GB/s 15.3 GB/s 15.1 GB/s
Apple A8X 1.5GHz 14.2 GB/s 7.44 GB/s 7.54 GB/s 7.49 GB/s
A9X Advantage 46.4% 101% 103% 102%

It’s also while looking at A9X’s memory subsystem however that we find our second and final curveball for A9X: the L3 cache. Or rather, the lack thereof. For multiple generations now Apple has used an L3 cache on both their phone and tablet SoCs to help feed both the CPU and GPU, as even a fast memory bus can’t keep up with a low latency local cache. Even as recent as A9, Apple included a 4MB victim cache. However for A9X there is no L3 cache; the only caches on the chip are the individual L1 and L2 caches for the CPU and GPU, along with some even smaller amounts for cache for various other functional blocks..

The big question right now is why Apple would do this. Our traditional wisdom here is that the L3 cache was put in place to service both the CPU and GPU, but especially the GPU. Graphics rendering is a memory bandwidth-intensive operation, and as Apple has consistently been well ahead of many of the other ARM SoC designers in GPU performance, they have been running headlong into the performance limitations imposed by narrow mobile memory interfaces. An L3 cache, in turn, would alleviate some of that memory pressure and keep both CPU and GPU performance up.

One explanation may be that Apple deemed the L3 cache no longer necessary with the A9X’s 128-bit LPDDR4 memory bus; that 51.2GB/sec of bandwidth meant that they no longer needed the cache to avoid GPU stalls. However while the use of LPDDR4 may be a factor, Apple’s ratio of bandwidth-to-GPU cores of roughly 4.26GB/sec-to-1 core is identical to A9’s, which does have an L3 cache. With A9X being a larger A9 in so many ways, this alone isn’t the whole story.

What’s especially curious is that the L3 cache on the A9 wasn’t costing Apple much in the way of space. Chipworks puts the size of A9’s 4MB L3 cache block at a puny ~4.5 mm2, which is just 3% the size of A9X. So although there is a cost to adding L3 cache, unless there are issues we can’t see even with a die shot (e.g. routing), Apple didn’t save much by getting rid of the L3 cache.

Our own Andrei Frumusanu suspects that it may be a power matter, and that Apple was using the L3 cache to save on power-expensive memory operations on the A9. With A9X however, it’s a tablet SoC that doesn’t face the same power restrictions, and as a result doesn’t need a power-saving cache. This would be coupled with the fact that with double the GPU cores, there would be a lot more pressure on just a 4MB cache versus the pressure created by A9, which in turn may drive the need for a larger cache and ultimately an even larger die size.

As it stands there’s no one obvious reason, and it’s likely that all 3 factors – die size, LPDDR4, and power needs – all played a part here, with only those within the halls of One Infinite Loop knowing for sure. However I will add that since Apple has removed the L3 cache, the GPU L2 cache must be sizable. Imagination’s tile based deferred rendering technology needs an on-chip cache to hold tiles in to work on, and while they don’t need an entire frame’s worth of cache (which on iPad Pro would be over 21MB), they do need enough cache to hold a single tile. It’s much harder to estimate GPU L2 cache size from a die shot (especially with Apple’s asymmetrical design), but I wouldn’t be surprised of A9X’s GPU L2 cache is greater than A9’s or A8X’s.

Building A9X Big: 147mm2, Manufactured By TSMC

Finally, let’s talk about the construction and fabrication of the A9X SoC itself. Chipworks’ previous analysis shows that the A9X is roughly 147mm2 in die size, and that it’s manufactured by TSMC on their 16nm FinFET process.

At 147mm2 the A9X is the second-largest of Apple’s X-series tablet SoCs. Only the A5X, the first such SoC, was larger. Fittingly, it was also built relative to Apple’s equally large A5 phone SoC. With only 3 previous tablet SoCs to use as a point of comparison I’m not sure there’s really a sweet spot we can say that Apple likes to stick to, but after two generations of SoCs in the 120mm2 to 130mm2 range, A9X is noticeably larger.

Some of that comes from the fact that A9 itself is a bit larger than normal – the TSMC version is 104.5mm2 – but Apple has also clearly added a fair bit to the SoC. The wildcard here is what yields look like for Apple, as that would tell us a lot about whether a 147mm2 A9X is just a large part or if Apple has taken a greater amount of risk than usual here.

A9X continues to be the largest 16nm FinFET ASIC we know to be in mass production at TSMC (we’ll ignore FPGAs for now), and while this will undoubtedly change a bit later this year once the next-generation discrete GPUs come online, I don’t think you’ll find a better example of how the contract chip manufacturing market has changed in a single generation. 4 years ago it would be GPUs leading the charge, but now it’s phone SoCs and a rather sizable tablet SoC that are first out of the gate. After almost a decade of catching up, SoCs have now reached the bleeding edge for chip fabrication, enabling rapid performance growth, but also inheriting the risks of being the leader. I won’t dwell on this too much, but I’m immensely curious about both what A9X yields are like as the largest FinFET ASIC at TSMC, and just how much of TSMC’s FinFET capacity Apple has been consuming with the production of A9 and A9X.

Finally, it's also interesting to note just how large A9X is compared to other high performance processors. Intel's latest-generation Skylake processors measure in at ~99mm2 for the 2 core GT2 configuration (Skylake-Y 2+2), and even the 4 core desktop GT2 configuration (Intel Skylake-K 4+2) is only 122mm2. So A9X is larger than either of these CPU cores, though admittedly as a whole SoC A9X contains a number of functional units either not present on Skylake or on Skylake's Platform Controller Hub (PCH). Still, this is the first time that we've seen an Apple launch a tablet SoC larger than an Intel 4 core desktop CPU.

Introduction and Design SoC Analysis: On x86 vs ARMv8
Comments Locked

408 Comments

View All Comments

  • Relic74 - Saturday, February 27, 2016 - link

    Citrix support isn't very good on the iPad Pro, we have one on the office as a test bed. We've gone with ChromeBooks instead, a little cheaper, though not by much as we bought the Dell 13" ChromeBooks which are about 600 bucks. Works fantastic as a terminal machine. The iPad Pro is just to expensive for such a thing and it doesn't support a mouse, plus external display support absolutely sucks. Their was black bars, resolution looked bad, doesn't support extending the desktop (an absolute must have feature) and the DPI is so large it looks like a children's OS. Though are biggest complaints was the lack of multi-user support, horrible file management, no Open ID support and can't run apps in the background. The iPad Pro just isn't an Enterprise computer. They might use them as data entry and retrieval devices but as an Office computer, nope.
  • name99 - Friday, January 22, 2016 - link

    Your comment, like the use of the term "Productivity software", reveals the sort of white collar snobbery that is rampant in supposedly classless America.
    I agree that an iPad (and for that matter a Surface) are highly sub-optimal devices for the tasks of large amounts of writing, research, constructing spreadsheets, debugging code, etc.

    But those are not the only jobs in the world. Musicians are also professionals (in the colloquial, if not the legal) sense, as are designers/drawers/artists, as are those using these sorts of tablet devices to hold large numbers of technical papers [my particular use case] (ie scientists/researchers), or blueprints or CAD/CAM material or medical diagrams.
    To claim that those people are not doing "real" jobs, or that they don't "deserve" or "need" a device optimized to their usage models (which are much heavier on finger or pencil/stylus/brush style manipulation, much lighter on keyboard manipulation) is basically one more version of the usual "look at me, I'm the most important person in the world, and only my needs matter".
  • Constructor - Saturday, January 23, 2016 - link

    Perfectly said!
  • MaxIT - Saturday, February 13, 2016 - link

    Absolutely correct! To some people on this (and similar) forum if you aren't doing Photoshopping, 3D modeling , CAD or extensive data querying you don't deserve the term "Pro".
    I know of people making a lot of real money, real big money, using just a notepad and a word processor. Or a sketch device.
    In my organization we are managing $36 millions gear with an outdated iPad 4 and PROFESSIONAL APPS (the same apps someone here keep saying it doesn't exist). But we don't deserve the term "pro", do we ?
  • Wagobert - Saturday, January 23, 2016 - link

    regarding software, I have to agree with Ddriver. On the "SOC Analysis: CPU Performance" page, the authors used Apple XCode (running presumably on a Mac). Could Apple's own XCode run on this hardware? This is being discussed on multiple sites, and the consensus seems to be that memory and IOS are the problem - see here, for example: https://www.quora.com/Will-Apple-make-an-iPad-Pro-...
  • Constructor - Saturday, January 23, 2016 - link

    Sure it could. The performance is definitely there. Replicating the entire UI would just be a pretty big task, and larger screens are usually a big advantage in coding and debugging.

    There's also the matter that Apple is reluctant to allow binaray code generation directly on the device because it could be abused for attacks (because the code signing key would have to be on the device and might be exploitable through other vulnerabilities).
  • MaxIT - Saturday, February 13, 2016 - link

    Maybe in the future, but not yet. To do some serious developing you need multiple windows, a good workspace and maybe some virtual machines... That means a big screen, a lot of ram and a different UI.
  • Relic74 - Saturday, February 27, 2016 - link

    It can but Apple won't release it for this, it's not a laptop.
  • zeeBomb - Saturday, January 23, 2016 - link

    Well I'm late
  • akdj - Monday, January 25, 2016 - link

    Apparently you're oblivious to the amount of resources, time money and man hours being devoted specifically to the development of mobile, companion apps from the likes of MS, Adobe and AutoDesk.
    None want to be left in the rear view mirror!
    Also, to whoever was beating up on the 2 dozen MS apps, there's a 'Glass' app used specifically for Office suite, scanning and the like. Maybe even 'Office Glass' --- but v1 of the suite's 'drop' a year ago ---or has it been two now? Doesn't Matter, I was on board day one and have had nothing but luck and reliability with it. Both on iOS and OS X. Adobe's companion apps JUST underwent ground up re-writes to support 64bit, handoff amnd it's continuity with a home, studio, desk or one's 'main production' --- not necessarily "pro" rig, but possibly the machine with peripheral options, storage, more power with. 110v constantly, etc. I received mine November 6th, ordered around a week, maybe two post-launch. I've owned every iPad and deploy them now and since iPad 4 'in the field' for my business our family's run for three generations. As well as a dozen full and two dozen part time & temp employees, plenty of us pay our mortgages, car payment(s), daycare and taxes using the iPad as our primary, if not 'only' computer while 'making paper' (we own/operate a flight service and mobile A/V production company in Alaska - I've been flying myself nearly thirty years --- & the ½ pound replacement (Mini 4) or 1.5 pound long trip replacement, iPP is an incredible relief from my 45-60 pound flight bag. Faster, more reliable and up to date than anything 'printed' as well --- its ability to file my flight plan, calculate fuel, diversions for safety, real time traffic, weather, or airport 'issues'. Jeep charts, plates 'no fly areas' maybe -- or any diversion from routine T/O or landing cycle knowledge is paramount & the more details, the better when you're flying in & outta the same areas son long
    In the air, test/beta versions of NextGen (ADSB's successor and the update to America, if not the world's ATC system --- with 3D display or HUD showing traffic, terrain, and their headings, altitude and speeds - as well, and most importantly where they're going to, whether their path crosses mine @ a certain moment in the future ...& with the info, both (if equipped) planes will be instructed to change heading, decrease/increase speed or altitude. TCAS (collision avoidance) and 'always on' transponders w/GPS & better tracking then radar and the many blind spots on the planet to radar --- as travel increases, your idea of professional should be changing - as these guys are faster than anything we used on our desks in 2010, just six years ago. Solid state, blazing fast storage, always on and always fast LTE connectivity, wifi if you're in range. The horsepower (I've yet to notice frame drops other than in the App Store as its repopulating during an extensive swatch and I'm deep down) to run most anything developers can dream up now and will continue better their apps, integration and aggregation with the 'mainframe' of the business ...whether you're an engineer, architect, car salesman or waitress. Teachers, UPS & FedEx'll update their tabs so,easy and the garbage men can get rid of pen and pencil as well as the monstrous waste of paper generated daily to be thrown straight into the trash.
    iPad Pro, the Surface Pro --- they're 'words' but my definition of professional is the ability to help me make money. A tool, usually an invaluable one that's evolved enough in the capacity I need it for to be considered Revolutionary
    That's 2010, 2012 the original and the Retina display 'then 2015, with iPP.
    I'm with the author(s). I've owned and LOVE Pencil, don't need or want the KB cover after using it for a week. At all
    9one thing on the UI side of the equation is the very excellent OS X like software keyboard layout, the Pencil as a helper for typing and picking suggested/predicted words above the keyboard I've found. And with common punctuation including 'shift' 5 for the % -- shift keys on both sides, double shifting does rage cap lock thing and we've got tab/delete, larger emoji key w/numeric and keyboard switcher in both sides of the space bar. The clipboard, undo and redo are awesome as are the 'up down' form filler/maneuver buttons on the right top of the KB UI. Well enough laid out, I've found a very comfortable case in the lap, perfect angle typing with my left thumb and right hand using/holding the pencil as my second hand. Worlds a treat, hard to explain correctly but efficient, effective and my near new 15" 2015 rMBP has been lonely since Thanksgiving (I'm floored by what Adobe's accomplished with their creative cloud, my iPad Air 2 or Pro mad their aggregation with OS X on my iMac, the Mac Pro. Or earlier mentioned MacBook. They're ALL Over It! The software companies are done boxing DVDs up with 300 page instruction manuals and the packaging costs. Get used to it. Lap/desktops aren't going anywhere but iPads can certainly be the tool of choice, primary tool to get their job done, inventory counted or their record produced!
    Pro football today had a bunch of problems on the sidelines today with their Surface Pros, had to 'turn em off' for a few. Both teams ...til they 'rebooted the system' lol
    iPads man. They're for pros that want to look, sound and be prepared professionally with reliability and extensive functionality, support and longevity. 'Imstiimown kids still use and it's still working great, the original iPad. Also have the Xoom, predecessor to Nexus. Doesn't 'light up'. It's. Broked.

Log in

Don't have an account? Sign up now