Camera Video Recording

Still staying with the camera functionality of the phone, I also monitored what happens during video recording. I recorded a short 8s clip at 1080p30 with the default settings of the camera app. 

Video recording absolutely makes use of all little cores at once. As we see in the power state distribution chart all cores are predominantly in their active clocked states doing some work. The scheduler run-queue depth also points out that this is a case of at least 4 larger threads that reside on the small cluster.

During the actual video recording the big cluster runs at only 800MHz. Nevertheless, it still sees some activity as 3 cores have some small threads placed on them. 

All in all it looks like video recording is about a large number of small threads. There are two spikes in the total run-queue depth that were predominantly caused by the little CPU cluster which pushed the total rq-depth up to 8 in for short moments. I'm not sure what caused the spikes as I remained relatively still during the recording and did no special activity to warrant such behaviour.

Camera: Still Snapshot Games: Real Racing 3 Launch
Comments Locked

157 Comments

View All Comments

  • modulusshift - Tuesday, September 1, 2015 - link

    Heck yes. And of course I'm interested if anything like this is even remotely possible for Apple hardware, though likely it would require jailbreaks, at least.
  • Andrei Frumusanu - Tuesday, September 1, 2015 - link

    Unfortunately basically none of the metrics measured here would be possible to extract from an iOS device.
  • TylerGrunter - Tuesday, September 1, 2015 - link

    Add one more vote for the follow up with synthetics.
    I would also want to see how the multitasking compares with the Snapdragons as they use the different frequency and voltage planes per core instead of the big.LITTLE.
    But I guess that would be better to see with the SD 820, as the 810 uses big.LITTLE. Consider it a request for when it comes!
  • tuxRoller - Wednesday, September 2, 2015 - link

    Big.little can use multiple planes for either cluster. The issue is purely implementation, tmk.
  • TylerGrunter - Wednesday, September 2, 2015 - link

    big.LITTLE can be use different planes for each cluster but same for all cores in each cluster, Qualcomm SoCs can use different planes for each core, that's the difference and it's a big one.
    https://www.qualcomm.com/news/onq/2013/10/25/power...
    I'm not sure that can be done in big.LITTLE.
  • tuxRoller - Friday, September 4, 2015 - link

    I remember that but that doesn't say that big.LITTLE can't keep each core on its own power plane just that the implementations haven't.
  • soccerballtux - Tuesday, September 1, 2015 - link

    to balance everything out-- meh, that doesn't interest me. most of the time I'm concerned with battery life and every-day performance. Android isn't a huge gaming device so absolute performance doesn't interest me.
  • porphyr - Tuesday, September 1, 2015 - link

    Please do!
  • ppi - Tuesday, September 1, 2015 - link

    Go ahead. This is one of the most interesting performance digging on this site since the random-write speeds on SSDs.
  • jospoortvliet - Friday, September 4, 2015 - link

    Yes, this was an awesome and interesting read.

Log in

Don't have an account? Sign up now