Conclusion: the Xeon D-1540 is awesome

If you only look at the integer performance of a single Broadwell core, the improvement over the Haswell based core is close to boring. But the fact that Intel was able to combine 8 of them together with dual 10 Gbit, 4 USB 3.0 controllers, 6 SATA 3 controller and quite a bit more inside a SoC that needs less than 45 W makes it an amazing product. In fact we have not seen such massive improvements from one Intel generation to another since the launch of the Xeon 5500. The performance per watt of a Xeon D-1540 is 50% better than the Haswell based E3 (Xeon E3-1230L). 

Most of the design wins of the Xeon D are network and storage devices and, to a lesser degree, micro servers. Intel also positions the Xeon D machines at the Datacenter/Network edge, even as an IOT gateway.

 

Now, granted, market positioning slides are all about short powerful messages and leave little room for nuance. But since we have room for lengthier commentaries, our job is to talk about nuances. So we feel the Xeon D can do a lot more. It can be a mid range java server, text search engine or high-end development machine. In can be a node inside a web server cluster that takes heavy traffic.

In fact the Xeon D-1540 ($581) makes the low end of the Xeon E5 SKUs such as the E5-2630 (6 cores at 2.3 GHz, 95 W, $612) look pretty bad for a lot of workloads. Why would you pay more for such E5 server that consumes a lot more? The answer is some HPC applications, as our results show. The only advantage such a low end dual socket E5 server has is memory capacity and the fact that you can use two of them (up to 12 cores). 

So as long as you do not make the mistake to use it for memory intensive HPC applications (note most HPC apps are memory intensive) and 8 cores is enough for you, the Xeon D is probably the most awesome product Intel has delivered in years, even if it is slightly hidden away from the mainstream.

Where does this leave the ARM server plans? 

The Xeon D effectively puts a big almost unbreakable lock on some parts of the server market in the short and mid term (as Intel will undoubtably further improve the Xeon D line). It is hard to see how anyone can offer an server SoC in the short term that can beat the sky high performance per watt ratio when performing dynamic web serving for example. 

However, the pricing and power envelope (about 60W in total for a "micro" server) of the Xeon D still leaves quite a bit of room in markets where density and pricing is everything. You do not need Xeon D power to run a caching or static web server as an Atom C2000-level of performance and a lot of DRAM slots will do. There are some chances here, but we would really like to see some real products instead of yet another slide deck with great promises. Frankly we don't think that the standard ARM designs will do. The A57 is probably not strong enough for the "non-micro server" market and it remains to be seen if the A72 will a large enough improvement. More specialized designs such as Cavium Thunder-X, Qualcomms Kryo or Broadcomm Vulcan might still capture a niche market in the foreseeable future.  

   

Web Infrastructure Power consumption
Comments Locked

90 Comments

View All Comments

  • zodiacfml - Tuesday, June 23, 2015 - link

    this is the reason why Intel focuses on mobile, it benefits their server cpus too.

    the 14nm process is the one to thank for these massive improvements. Samsung also has 14nm and the S6 Exynos is in similar achievement
  • Refuge - Tuesday, June 23, 2015 - link

    I disagree, the Exynos is no where close to a similar achievement.

    Granted it is doing better than Qualcomm's equivalent at the moment.

    But I'm also faster than a fat man with a broken leg running on a hot and humid day.
  • zodiacfml - Tuesday, June 23, 2015 - link

    Still, these 14nm SoCs are the best in their class as they pack more cores while using less power.
  • LukaP - Thursday, June 25, 2015 - link

    Just a note, Samsung's (and TSMC's 16nm FF(+) process isnt really 16nm entirely. The interconnects are still 28nm making it not nearly as dense as intel's 14nm, as well as being more leaky. IIRC their density and leakage can be compared to intels 22nm TriGate in the times of Ivy Bridge
  • nils_ - Tuesday, June 23, 2015 - link

    Few questions:
    1. Why did you disable x2apic?
    2. Did the Large Page allocation in the Java Benchmark actually work? It can be a bit tricky some times and then falls back to 4KiB pages
    3. What were the JVM settings for elasticsearch?
  • JohanAnandtech - Thursday, June 25, 2015 - link

    1. Was out of the box disabled. I have to admit I did not check that option. Performance impact should be neglible though.
    2. I have no monitored that, but there was a performance impact if we disabled it.
    3. ES_heap_size = 20 G; otherwise standard ES settings
  • Daniel Egger - Tuesday, June 23, 2015 - link

    Wow, that is still quite pricey here. For the price of the SuperMicro tower you can actually get a 1U 2S Xeon E5 system with one socket equipped and some memory. I'd really love to replace my home server (running on Core i5 rather than Xeon E3 for efficiency reasons, those C chipset suck balls) with one of those systems if they can make them efficient and quiet.
  • hifiaudio2 - Tuesday, June 23, 2015 - link

    Two questions:

    1. How does the Xeon D compare to the c2700 series for a home NAS that will also serve as an Emby server and HDHR DVR (when that software is available). Could be one or two 1080p transcodes going on at the same time at most. Usually no transcoding if I am using Kodi or something that can natively play back the file, but for remote viewing or random uses over the network, some transcoding by Emby could be required -- if you are not familiar with Emby think of the same thing using Plex. So would the extra power of the Xeon D be of use to me, or is the 8 core c2750 plenty for the aforementioned use case?

    2. If I do go with this unit, which dimms specifically does it use? The Supermicro c2750 board takes laptop style dimms. What does this take?
  • JohanAnandtech - Tuesday, June 23, 2015 - link

    I can answer 2: see the picture here: http://www.anandtech.com/show/9185/intel-xeon-d-re... RDIMMs or UDIMMS (= basically "normal" DDR-4) will do.
  • hifiaudio2 - Tuesday, June 23, 2015 - link

    Thanks.. So this ram:?

    http://www.amazon.com/Crucial-PC4-2133-Registered-...

    And what is the SR x4 / DR x8 difference in the two choices for the 8gb sticks?

Log in

Don't have an account? Sign up now